Skip to main content
Log in

Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite has been investigated for use in the osseous environment for over 20 years and the biocompatibility of the ceramic and its osseoconductive behavior is well established. Therefore, the use of porous hydroxyapatite for the repair of osseous defects seems promising with potential for complete penetration of osseous tissue and restoration of vascularity throughout the repair site. However, there have been few systematic studies of the effects of physical properties such as macropore size and pore connectivity on the rate and quality of bone integration within porous hydroxyapatite implants. This paper quantifies the early biological response to a well-characterized series of implants with uniform microstructure and phase composition, but differing macrostructures and demonstrates the dependence of the rate of osseointegration on the apparent density of porous hydroxyapatite as a function of pore connectivity. Furthermore, compression testing established that bony ingrowth has a strong reinforcing effect on porous hydroxyapatite implants, which is more pronounced in the lower density implants, as a result of a greater relative volume of bone ingrowth. © 1999 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Denissen, K. De Groot, A. A. Driessen, J. G. C. WOLKE, J. G. J. Peelen, H. J. A. Van Dijk, A. P. Gehring and P. J. Klopper, Sci. Ceram. 10 (1980) 63.

  2. H. Aoki, in ‘Science and medical applications of hydroxyapatite’ (Takayama Press, Tokyo, 1991) 137.

    Google Scholar 

  3. P. K. Stephenson, M. A. R. Freeman, P. A. Revell, J. German, M. Tuke and C. J. Pirie, J. Arthroplasty 6 (1991) 51.

    PubMed  Google Scholar 

  4. W. F. De Jong, Rec. Trav. Chim. 45 (1926) 445.

    Google Scholar 

  5. A. S. Posner, Phys. Rev. 49 (1969) 760.

    Google Scholar 

  6. G. Heimke, in ‘Osseo-intergrated implants’, edited by G. Heimke (CRC Press, Boca Raton, 1990) p. 2.

    Google Scholar 

  7. R. E. Holmes, Plast. Reconstr. Surg. 63 (1979) 626.

    PubMed  Google Scholar 

  8. R. E. Holmes, V. Mooney, R. Bucholz and A. Tencer,Clin. Orthop. Rel. Res. 188 (1984) 252.

    Google Scholar 

  9. F.-H. Lin, C.-C. Lin, H.-C. Liu, Y.-Y. Huang, C.-Y. Wang and C.-M. Lu, Biomaterials 15 (1994) 1087.

    PubMed  Google Scholar 

  10. R. B. Martin, M. W. Chapman, N. A. Sharkey, S. L. Zissimos and B. Bay, ibid. 14 (1993) 341.

    PubMed  Google Scholar 

  11. J. H. Kuèhne, R. Bartl, B. Frish, C. Hanmer, V. Jansson and M. Zimmer, Acta Orthop. Scand. 65 (1994) 246.

    PubMed  Google Scholar 

  12. W. Renooij, H. A. Hoogendoorn, W. J. Visser, R. H. F. Lentferink, M. G. J. Schmitz, H. Van Ieperen, S. J. Oldenburg, W. M. J anssen, L. M. A. Akkermans and P. Wittebol, Clin. Orthop. Rel. Res. 197 (1985) 272.

    Google Scholar 

  13. M. Ogiso, Y. Yamashita, T. Tabata, R. Ramonito and D. Borgese, J. Biomed. Mater. Res. 28 (1994) 805.

    PubMed  Google Scholar 

  14. J. W. Smith, J. Bone Joint Surg. 45-B (1963) 761.

    Google Scholar 

  15. S. F. Hulbert, J. S. Morrison and J. J. Klawitter,J. Biomed. Mater. Res. 6 (1972) 347.

    PubMed  Google Scholar 

  16. J. J. Klawitter, J. G. Bagwell, A. M. Weinstein, B. W. Sauer and J. R. Pruitt, ibid. 10 (1976) 311.

    PubMed  Google Scholar 

  17. J. J. Klawitter and S. F. Hulbert, ibid. 5 (1971) 161.

    Google Scholar 

  18. A. Uchida, S. M. L. Nade, E. R. Mccartney and W. Ching, J. Bone Joint Surg. 66-B (1984) 269.

    PubMed  Google Scholar 

  19. G. Daculsi and N. Passuti, Biomaterials 11 (1990) 86.

  20. P. S. Eggli, W. Muller and R. K. Schenk, Clin. Orthop. Rel. Res. 232 (1988) 127.

    Google Scholar 

  21. L. J. Gibson, J. Biomech. 18 (1985) 317.

    PubMed  Google Scholar 

  22. L. J. Gibson and M. F. Ashby, in ‘Cellular solids’ (Pergamon Press, Oxford, 1988) p. 120.

    Google Scholar 

  23. K. A. Hing, S. M. Best, P. A. Revell, K. E. Tanner and W. Bonfield, J. Mater. Sci.: Mater. Med. 8 (1997) 731.

    Article  Google Scholar 

  24. M. TreÂcant, J. DeleÂcrin, J. Royer, E. Goyenvalle and G. Daculsi, Clin. Mater. 15 (1994) 233.

    Google Scholar 

  25. K. A. Hing, S. M. Best and W. Bonfield, J. Mater. Sci.: Mater. Med. (in press).

  26. K. Donath, J. Oral Pathol. 11 (1982) 318.

    PubMed  Google Scholar 

  27. E. R. Weibel and H. E. Elias, in ‘Quantitative methods in morphology’, edited by E. R. Weibel and H. E. Elias (Springer-Verlag, Berlin, 1967) 87.

    Google Scholar 

  28. H. M. Frost, in ‘Bone histomorphometry’, edited by P. J. Meunier (1976) 361.

  29. G. H. Bourne, in ‘The biochemistry and physiology of bone’ (Academic Press, New York, 1972) p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hing, K.A., Best, S.M., Tanner, K.E. et al. Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. Journal of Materials Science: Materials in Medicine 10, 663–670 (1999). https://doi.org/10.1023/A:1008900127475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008900127475

Keywords

Navigation