Skip to main content
Log in

Structure of Y and Zr Segregated Grain Boundaries in Alumina

  • Published:
Interface Science

Abstract

Grain boundary segregation of Y and Zr in α-Al2O3 and the atomic structural environment around the Y and Zr atoms have been investigated using high resolution STEM and EXAFS. At dilute concentrations, the Y ions in α-Al2O3 grain boundaries, on average, are coordinated by 4 oxygens, at a distance of 2.30 Å, which corresponds nearly to the Y-O bond length in cubic Y2O3, and Zr ions are coordinated by 5 oxygens at a distance of 2.14 Å, which is approximately the same as the average Zr-O bond length in monoclinic ZrO2. However, in the EXAFS radial distribution function, the Y-cation and Zr-cation next nearest neighbor shell cannot be clearly identified. These results suggest that Y and Zr at dilute concentrations in α-Al2O3 occupy grain boundary sites with well defined nearest neighbor cation-oxygen bond lengths similar to those in their parent oxides, but with the next nearest neighbor cation-cation distances varying considerably from site to site. Grain growth can cause grain boundaries to become supersaturated by Y. In this case, both the Y-O nearest neighbor coordination number and the ordering of Y with respect to Al ions beyond nearest neighbor O are increased. This Y-Al distance is the same as that expected for the Y-Al distance when Y substitutes for Al while relaxing the Y-O distance to that in Y2O3. This may indicate that as the Y concentration increases, Y begins to occupy near-boundary sites in planes on each side of the geometrical boundary. In these near-boundary planes, the nearest neighbor ordering extends at least to nearest neighbor cations. Nucleation of the YAG phase leads to the depletion of these partially ordered layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Rittner and D.N. Seidman, Acta Mater. 45, 3191 (1997).

    Google Scholar 

  2. C.W. Li and W.D. Kingery, in Advances in Ceramics, Vol. 10: Structure and Properties of MgO and Al 2 O 3 Ceramics, edited by W.D. Kingery (American Ceramic Society, Columbus, OH, 1984), p. 368.

    Google Scholar 

  3. A.M. Thompson, K.K. Soni, H.M. Chan, M.P. Harmer, D.B. Williams, J.M. Chabala, and R. Levi-Setti, J. Amer. Ceram. Soc. 80, 373 (1997).

    Google Scholar 

  4. W.C. Johnson, Metall. Trans. A 8A, 1413 (1977).

    Google Scholar 

  5. E.D. Hondros and M.P. Seah, Inter. Met. Rev. 22, 262 (1977).

    Google Scholar 

  6. M.L. Gall, A.M. Huntz, B. Lesage, C. Monty, and J. Bernardini, J. Mater. Sci. 30, 201 (1995).

    Google Scholar 

  7. J.D. French, J. Zhao, M.P. Harmer, H.M. Chan, and G.A. Miller, J. Amer. Ceram. Soc. 77, 2857 (1994).

    Google Scholar 

  8. F. Wakai, T. Nagano, and T. Iga, J. Amer. Ceram. Soc. 80, 2361 (1997).

    Google Scholar 

  9. J. Cho, M.P. Harmer, H.M. Chan, J.M. Rickman, and A.M. Thompson, J. Amer. Ceram. Soc. 80, 1013 (1997).

    Google Scholar 

  10. S. Lartigue, C. Carry, and L. Priester, J. Phys. (Paris) C1(S1), 985 (1990).

    Google Scholar 

  11. H. Yoshida, Y. Ikuhara, and T. Sakuma, J. Mater. Res. 13, 2597 (1998).

    Google Scholar 

  12. S. Lartigue, L. Priester, F. Dupau, P. Gruffel, and C. Carry, Mater. Sci. Eng. A164, 211 (1993).

    Google Scholar 

  13. J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Amer. Ceram. Soc. 81, 3001 (1998).

    Google Scholar 

  14. M.A. Gulgun, V. Putlayev, and M. Ruhle, J. Amer. Ceram. Soc., in press.

  15. Y. Li, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer, J. Chabala, K.L. Gavrilov, and R. Levi-Setti, J. Am. Ceram. Soc. 82, 1497 (1999).

    Google Scholar 

  16. R.F. Cook and A.G. Schrott, J. Amer. Ceram. Soc. 71, 50 (1988).

    Google Scholar 

  17. R.I. Taylor, J.P. Coad, and R.J. Brook, J. Amer. Ceram. Soc. 57, 539 (1974).

    Google Scholar 

  18. J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Am. Ceram. Soc. 82, 2865 (1999).

    Google Scholar 

  19. D.R. Clarke, J. Amer. Ceram. Soc. 63, 339 (1980).

    Google Scholar 

  20. M.K. Loudjani, J. Roy, and A.M. Huntz, J. Amer. Ceram. Soc. 68, 559 (1985).

    Google Scholar 

  21. M.K. Loudjani, A.M. Huntz, and R. Cortes, J. Mater. Sci. 28, 6466 (1993).

    Google Scholar 

  22. K. Kaneko, T. Gemming, I. Tanaka, and H. Mullejans, Phil. Mag. A 77, 1255 (1998).

    Google Scholar 

  23. W.D. Kaplan, H. Mullejans, M.Ruhle, J. Rodel, and N. Claussen, J. Amer. Ceram. Soc. 78, 2841 (1995).

    Google Scholar 

  24. C. Tang, P. Georgopoulos, and J.B. Cohn, J. Amer. Ceram. Soc. 65, 625 (1982).

    Google Scholar 

  25. P. Li, I.W. Chen, and J.E. Penner-Hahn, J. Amer. Ceram. Soc. 77, 118 (1994).

    Google Scholar 

  26. K.L. Kavanagh and G.S. Cargill III, Phys. Rev. B 45, 3323 (1992).

    Google Scholar 

  27. M.K. Loudjani and R. Cortes, J. Euro. Ceram. Soc. 19, 2659 (1999).

    Google Scholar 

  28. C.M. Wang, J. Cho, J., H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Am. Ceram. Soc., submitted.

  29. C.M. Wang, G.S. Cargill III, M.P. Harmer, H.M. Chan, and J. Cho, Acta Mater. 47, 3411 (1999).

    Google Scholar 

  30. C.M.Wang, G.S. Cargill III, H.M. Chan, and M.P. Harmer, Acta Mater. 48, 2579 (2000).

    Google Scholar 

  31. P. Gruffel and C. Carry, J. Euro. Ceram. Soc. 11, 189 (1993).

    Google Scholar 

  32. G. Cliff and G.W. Lorimer, J. Microsc. 103, 203 (1975).

    Google Scholar 

  33. U. Alber, H. Mullehans, and M. Ruhle, Ultramicroscopy 69, 105 (1997).

    Google Scholar 

  34. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).

    Google Scholar 

  35. B.K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag, New York, 1986).

    Google Scholar 

  36. J. Cho, Ph.D. thesis, Lehigh University, 1998.

  37. W.Y. Ching, Y.N. Xu, and M. Ruhle, J. Amer. Ceram. Soc. 80, 3199 (1997).

    Google Scholar 

  38. M. Exner and M.W. Finnis, Mater. Sci. Forum 207-209, 225 (1996).

    Google Scholar 

  39. P.R. Kenway, J. Amer. Ceram. Soc. 77, 349 (1994).

    Google Scholar 

  40. T. Hoche, P.R. Kenway, H.J. Kleebe, M. Ruhle, and P.A. Morris, J. Amer. Ceram. Soc. 77, 339 (1994).

    Google Scholar 

  41. S.D. Mo, W.Y. Ching, and R.H. French, J. Amer. Ceram. Soc. 79, 627 (1996).

    Google Scholar 

  42. C.A. Handwerker, J.M. Dynys, R.M. Cannon, and R.L. Coble, J. Am. Ceram. Soc. 73, 1371 (1990).

    Google Scholar 

  43. D. McLean, Grain Boundaries in Metals (Clarendon Press, Oxford, 1957), p. 116.

    Google Scholar 

  44. R.C. McCune, W.T. Donlon, and R.C. Ku, J. Am. Ceram. Soc. 69, C-196 (1986).

    Google Scholar 

  45. J.D. Cawley and J.W. Halloran, J. Amer. Ceram. Soc. 69, C-195 (1986).

    Google Scholar 

  46. C.D. Terwilliger and Y.M. Chiang, Acta Metall. Mater. 43, 319 (1995).

    Google Scholar 

  47. E.A. Colbourn, W.C. Mackrodt, and P.W. Tasker, J. Mater. Sci. 18, 1917 (1983).

    Google Scholar 

  48. N. Ishizawa, T. Miyata, I. Minato, F. Marumo, and S. Iwai, Acta Crystal. B36, 228 (1980).

    Google Scholar 

  49. M. Bonnet and A. Delapalme, Acta Crystal. A31, 264 (1975).

    Google Scholar 

  50. F. Euler and J.A. Bruce, Acta Crystal. 19, 971 (1965).

    Google Scholar 

  51. D.K. Smith and H.W. Newkirk, Acta Crystal. 18, 983 (1965).

    Google Scholar 

  52. C.J. Howard, E.H. Kisi, R.B. Roberts, and R.J. Hill, J. Amer. Ceram. Soc. 73, 2828 (1990).

    Google Scholar 

  53. R.D. Shannon, Acta Crystallogr. A32, 751 (1976).

    Google Scholar 

  54. Il-Joon Bae and S. Baik, J. Amer. Ceram. Soc. 80, 1149 (1997).

    Google Scholar 

  55. S.I. Bae and S. Baik, J. Amer. Ceram. Soc. 76, 1065 (1993).

    Google Scholar 

  56. S.J. Bennison and M.P. Harmer, in Ceramic Transactions,Vol. 7: Sintering of Advanced Ceramics, edited by C.A. Handwerker, J.E. Blendell, and W.A. Kaysser (American Ceramic Society, Westerville, OH, 1990), p. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Cargill, G., Chan, H. et al. Structure of Y and Zr Segregated Grain Boundaries in Alumina. Interface Science 8, 243–255 (2000). https://doi.org/10.1023/A:1008717820000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008717820000

Navigation