Skip to main content
Log in

Effects of Poly(ethylene glycol) Doping on the Behavior of Pyrene, Rhodamine 6G, and Acrylodan-Labeled Bovine Serum Albumin Sequestered within Tetramethylorthosilane-Derived Sol-Gel-Processed Composites

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We investigate the effects of controlled poly(ethylene glycol) (PEG) doping on the behavior of pyrene, rhodamine 6G (R6G), and acrylodan-labeled bovine serum albumin (BSA-Ac) sequestered within tetramethylorthosilicate (TMOS)-derived sol-gel-processed materials. To probe the dipolarity of the local environment within the composite we performed static fluorescence measurements on pyrene as the composites aged. We found that small levels of PEG loading effected significant enhancements in the local dipolarity surrounding the average pyrene molecule. Time-resolved fluorescence anisotropy measurements were used to follow the rotational reorientation dynamics of R6G as the composites aged. As the PEG loading increased, the R6G reorientational mobility increased. Nitrogen adsorption techniques were used to quantify the effects of PEG doping level on the surface area and final xerogel pore features. A large reduction in surface area was observed with PEG doping, but no detectable change in pore size was noted. The effects of PEG doping on a biomolecule were probed by following the time-resolved fluorescence anisotropy decay of BSA-Ac. These results showed that PEG doping resulted in increased biomolecule dynamics relative to that found for a neat, undoped TMOS-derived composites. Together these results show that PEG doping can be used to tune the sol-gel-processed composite dipolarity, alter the mobility of dopants sequestered within the composite, control analyte acessibility to the sensing chemistry, and modulate the internal dynamics within a biodopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench and J.K. West (Eds.), Chemical Processing of Advanced Materials (Wiley, New York, 1992).

    Google Scholar 

  2. L.L. Hench and J.K. West, Chem. Rev. 33, 90 (1992).

    Google Scholar 

  3. A. Paul, Chemistry of Glasses, 2nd edition (Chapman and Hall, New York, 1990), pp. 51-85.

    Google Scholar 

  4. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  5. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink, Anal. Chem. 66, 1121A (1994).

    Google Scholar 

  6. O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, and J. Gun, Anal. Chem. 67, 22A (1995).

    Google Scholar 

  7. R. Reisfeld and C.K. Jorgenson (Eds.), Chemistry, Spectroscopy, and Applications of Sol-Gel Glasses (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  8. D. Levy, in Proceedings of the First European Workshop on Hybrid Organic-Inorganic Materials (Synthesis, Properties, Applications), edited by C. Sanchez and F. Ribot (1993), pp.77-95.

  9. U. Narang, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 229 (1993).

    Google Scholar 

  10. F.P. Schafer, Topics in Applied Physics, 2nd edition (Springer, Berlin, 1977).

    Google Scholar 

  11. R. Reisfeld, R. Zusman, Y. Cohen, and M. Eyal, Chem. Phys. Lett. 147, 142 (1988).

    Google Scholar 

  12. R. Reisfeld and R. Zusman, U.S. Patent No. 4,666,649 (1987).

  13. Y. Zhang, P.N. Prasad, and R. Burzynski, in Chemical Processing of Advanced Materials, edited by L.L. Henon and J.K. West (Wiley, New York, 1992), p. 825.

    Google Scholar 

  14. C. Rotman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293(1992).

    Google Scholar 

  15. R. Zusman, C. Rottman, M. Ottolenghi, and D. Avnir, J. Non-Cryst. Solids 122, 107 (1990).

    Google Scholar 

  16. B. Dunn and J.I. Zink, J. Mater. Chem. 1, 903 (1991).

    Google Scholar 

  17. S. Braun, S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Mater. Lett. 10, 1 (1990).

    Google Scholar 

  18. L.M. Ellerby, C.R. Nishida, F. Nishida, S.A. Yamanaka, B. Dunn, J.S. Valentine, and J.I. Zink, Science 255, 1113 (1992).

    Google Scholar 

  19. D. Avnir, D. Levy, and R.J. Reisfeld, Phys. Chem. 88, 5956 (1984).

    Google Scholar 

  20. R. Wang, U. Narang, F.V. Bright, and P.N. Prasad, Anal. Chem. 65, 2671, (1993).

    Google Scholar 

  21. R. Gvishi, G.S. He, P.N. Prasad, U. Narang, M. Li, F.V. Bright, B.A. Reinhardt, J.C. Bhatt, and A.G. Dillard, Appl. Spectrosc. 6, 834 (1995).

    Google Scholar 

  22. M.R. Shahriari and J.Y. Ding, in Sol-Gel Optics: Processing and Applications, edited by L.C. Klein (Kluwer Academic Publishers, New York, 1994), Chapter 13.

    Google Scholar 

  23. C.M. Ingersoll and F.V. Bright, Chemtech. 27, 26 (1997).

    Google Scholar 

  24. E.R. Carraway, J.N. Demas, and B.A. DeGraff, Langmuir 7, 2991 (1991).

    Google Scholar 

  25. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, SPIE Sol-Gel Optics II 1758, 456 (1992).

    Google Scholar 

  26. U. Narang, R.A. Dunbar, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 1700 (1993).

    Google Scholar 

  27. C.M. Ingersoll and F.V. Bright, Sol-gel based biosensors, Encyclopedia of Science & Technology (McGraw-Hill Yearbook of Science and Technology, 1997), pp. 47-48.

  28. J.E. Lee and S.S. Saavedra, Anal. Chim. Acta 285, 265 (1994).

    Google Scholar 

  29. N. Aharonson, M. Alstein, G. Avidan, D. Avnir, A. Bronshtein, A. Lewis, K. Lieberman, M. Ottolenghi, Y. Polevaya, C. Rottman, J. Samuel, S. Shyalom, A. Strinkovski, and A. Turniansky, in Better Ceramics Through Chemistry, VI, edited by C. Sanchez, M.L. Mecartney, C.J. Brinker, and A. Cheetham (Res. Soc. Proc. 1994), Vol. 346, pp. 1-12.

  30. U. Narang, P.N. Prasad, F.V. Bright, A. Kumar, N.D. Kumar, B.D. Malhotra, M.N. Kamalasanan, and S. Chandra, Anal. Chem. 66, 3139 (1994).

    Google Scholar 

  31. G. Carturan, R. Campostrini, S. Dire, V. Scardi, and E.J. De-Alteriis, Molec. Catal. 57, L13 (1989).

    Google Scholar 

  32. S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi, and S. Braun, Biotech. Appl. Biochem. 15, 227 (1992).

    Google Scholar 

  33. P.L. Edmiston, C.L. Wambolt, M.K. Smith, and S.S. Saavedra, J. Colloid Interface Sci. 163, 395 (1994).

    Google Scholar 

  34. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, in Sol-Gel Optics II, SPIE Symposium Series, edited by J.D. Mackouzey (1992), Vol. 1758, pp. 1-8.

  35. D. Avnir, S. Braun, and M. Ottolenghi, in ACS Symposium Series, edited by T. Beim (1992), Vol. 999.

  36. L. Inama, S. Dire, G. Carturan, and A. Cavazza, J. Biotech. 30, 197 (1993).

    Google Scholar 

  37. S. Wu, L.M. Ellerby, J.S. Cohan, B. Dunn, M.A. El-Sayed, J.S. Valentine, and J.I. Zink, Chem. Mater. 5, 115 (1993).

    Google Scholar 

  38. J.I. Zink and B. Dunn, in Proceedings of the First European Workshop on Hybrid Organic-Inorganic Materials (Synthesis, Properties, Applications), edited by C. Sanchez and F. Ribot (1993), pp. 143-152.

  39. Y. Kurokawa, H. Ohta, M. Okubo, and M. Takahashi, Carbohydrate Polym. 23, 1 (1994).

    Google Scholar 

  40. J.D. Jordan, R.A. Dunbar, and F.V. Bright, Anal. Chem. 67, 2436 (1995).

    Google Scholar 

  41. S.S. Wang, H.L. Liu, L.Y. Zhang, and X. Yao, Ferroelec. Lett. 19, 89 (1995).

    Google Scholar 

  42. C.J. Brinker, D.M. Smith, R. Deshpande, P.M. Davis, S. Hietala, G.C. Frye, C.S. Ashley, and R.A. Assink, Catal. Today 14, 155 (1992).

    Google Scholar 

  43. D. Basmadjian, G.N. Fulford, B.I. Parsons, and D.S. Montgomery, J. Catal. 1, 547 (1962).

    Google Scholar 

  44. K. Maeda, F. Mizukami, M. Watanabe, S. Niwa, M. Toba, and K. Shimizu, Chem. & Ind. 4, 807 (1989).

    Google Scholar 

  45. Y. Hu, Y.J. Chung, and J.D. Mackenzie, J. Mater. Sci. 28, 6549 (1993).

    Google Scholar 

  46. M. Nandi, J.A. Conklin, L. Salvati, and A. Sen, Chem. Mater. 3, 201 (1991).

    Google Scholar 

  47. B.M. Novak and C. Davies, Macromolecules 24, 5481 (1991).

    Google Scholar 

  48. J.C. Yang and Y.G. Shul, Catal. Lett. 36, 41 (1996).

    Google Scholar 

  49. A. Abuchowski and F.F. Davis, in Enzymes as Drugs, edited by I.S. Holcenberg and J. Roberts (Wiley-Interscience, New York, 1981), pp. 367-383.

    Google Scholar 

  50. C. Delgado, G.E. Francis, and D. Fisher, Crit. Rev. Ther. Drug Carrier Syst. 9, 249 (1992).

    Google Scholar 

  51. D.C. Dong and M. Winnik, Photochem. Photobiol. 35, 17 (1982).

    Google Scholar 

  52. U. Narang, R. Wang, P.N. Prasad, and F.V. Bright, J. Phys. Chem. 98, 17 (1994).

    Google Scholar 

  53. J.S. Lundgren, M.P. Heitz, and F.V. Bright, Anal. Chem. 67, 3781 (1995).

    Google Scholar 

  54. R. Wang and F.V. Bright, J. Phys. Chem. 97, 4231 (1993).

    Google Scholar 

  55. R. Wang and F.V. Bright, Appl. Spectrosc. 47, 800 (1993).

    Google Scholar 

  56. R. Wang, S. Sun, E.J. Bekos, and F.V. Bright, Anal. Chem. 67, 149 (1994).

    Google Scholar 

  57. R.D. Spencer and G. Weber, J. Chem. Phys. 52, 1654 (1970).

    Google Scholar 

  58. J.R. Lakowicz, Principle of Fluorescence Spectroscopy (Plenum Press, New York, 1983).

    Google Scholar 

  59. J.R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy (Plenum Press, New York, 1991), Volumes 1–3; (1994), Volume 4.

    Google Scholar 

  60. F.V. Bright, T.A. Betts, and K.S. Litwiler, C.R.C. Crit. Rev. Anal. Chem. 21, 389 (1990).

    Google Scholar 

  61. J.M. Beecham and E. Gratton, Proc. SPIE (1988), Vol. 70, p. 909.

    Google Scholar 

  62. A.W. Adamson, Physical Chemistry of Surfaces (Wiley-Interscience, New York, 1990).

    Google Scholar 

  63. P.E. Barrett, L.S. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Google Scholar 

  64. D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem. 88, 5956 (1984).

    Google Scholar 

  65. J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem. 93, 2134 (1989).

    Google Scholar 

  66. K. Matsui and T. Nakazawa, Bull. Chem. Soc. Jpn. 63, 11 (1990).

    Google Scholar 

  67. K. Matsui, Langmuir 8, 673 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.A., Jordan, J.D. & Bright, F.V. Effects of Poly(ethylene glycol) Doping on the Behavior of Pyrene, Rhodamine 6G, and Acrylodan-Labeled Bovine Serum Albumin Sequestered within Tetramethylorthosilane-Derived Sol-Gel-Processed Composites. Journal of Sol-Gel Science and Technology 11, 43–54 (1998). https://doi.org/10.1023/A:1008680714826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008680714826

Navigation