Skip to main content
Log in

A tracked approach for automated NMR assignments in proteins (TATAPRO)

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A novel automated approach for the sequence specific NMR assignments of 1HN, 13Cα, 13Cβ, 13C′/1Hα and 15N spins in proteins, using triple resonance experimental data, is presented. The algorithm, TATAPRO (Tracked AuTomated Assignments in Proteins) utilizes the protein primary sequence and peak lists from a set of triple resonance spectra which correlate 1HN and 15N chemical shifts with those of 13Cα, 13Cβ and 13C′/1Hα. The information derived from such correlations is used to create a `master_list' consisting of all possible sets of 1HN i, 15Ni, 13Cα i, 13Cβ i, 13C′i/1Hα i, 13Cα i−1, 13Cβ i−1 and 13C′i−1/ 1Hα i−1 chemical shifts. On the basis of an extensive statistical analysis of 13Cα and 13Cβ chemical shift data of proteins derived from the BioMagResBank (BMRB), it is shown that the 20 amino acid residues can be grouped into eight distinct categories, each of which is assigned a unique two-digit code. Such a code is used to tag individual sets of chemical shifts in the master_list and also to translate the protein primary sequence into an array called pps_array. The program then uses the master_list to search for neighbouring partners of a given amino acid residue along the polypeptide chain and sequentially assigns a maximum possible stretch of residues on either side. While doing so, each assigned residue is tracked in an array called assig_array, with the two-digit code assigned earlier. The assig_array is then mapped onto the pps_array for sequence specific resonance assignment. The program has been tested using experimental data on a calcium binding protein from Entamoeba histolytica (Eh-CaBP, 15 kDa) having substantial internal sequence homology and using published data on four other proteins in the molecular weight range of 18–42 kDa. In all the cases, nearly complete sequence specific resonance assignments (> 95%) are obtained. Furthermore, the reliability of the program has been tested by deleting sets of chemical shifts randomly from the master_list created for the test proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels, C., Billeter, M., Güntert, P. and Wüthrich, K. (1996) J. Biomol. NMR, 7, 207-213.

    Google Scholar 

  • Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131-138.

    Google Scholar 

  • Buchler, N.E.G., Zuiderweg, E.R.P., Wang, H. and Goldstein, R.A. (1997) J. Magn. Reson., 125, 34-42.

    Google Scholar 

  • Choy, W.Y., Sanctuary, B.C. and Zhu, G. (1997) J. Chem. Inf. Comput. Sci., 37, 1086-1094.

    Google Scholar 

  • Clubb, R.T., Thanabal, V. and Wagner, G. (1992a) J. Magn. Reson., 97, 213-217.

    Google Scholar 

  • Clubb, R.T., Thanabal, V. and Wagner, G. (1992b) J. Biomol. NMR, 2, 203-210.

    Google Scholar 

  • Clubb, R.T. and Wagner, G. (1992) J. Biomol. NMR, 2, 389-394.

    Google Scholar 

  • Friedrichs, M.S., Mueller, L. and Wittekind, M. (1994) J. Biomol. NMR, 4, 703-726.

    Google Scholar 

  • Gardner, K.H. and Kay, L.E. (1998) Annu. Rev. Biophys. Biomol. Struct., 27, 357-406.

    Google Scholar 

  • Gardner, K.H., Zhang, X., Gehring, K. and Kay, L.E. (1998) J. Am. Chem. Soc., 120, 11738-11748.

    Google Scholar 

  • Gronwald, W., Willard, L., Jellard, T., Boyko, R.F., Rajarathnam, K., Wishart, D.S., Sönnichsen, F.D. and Sykes, B.D. (1998) J. Biomol. NMR, 12, 395-405.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc., 114, 6291-6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185-204.

    Google Scholar 

  • Hare, B.J. and Prestegard, H. (1994) J. Biomol. NMR, 4, 35-46.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659-4667.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496-514.

    Google Scholar 

  • Li, K.-B. and Sanctuary, B.C. (1997) J. Chem. Inf. Comput. Sci., 37, 467-477.

    Google Scholar 

  • Li, S.C., Zwahlen, C., Vincent, S.J., McGlade, C.J., Kay, L.E., Pawson, T. and Forman-Kay, J.D. (1998) Nat. Struct. Biol., 5, 1075-1083.

    Google Scholar 

  • Leutner, M., Gschwind, R.M., Liermann, J., Schwarz, C., Gemmecker, G. and Kessler, H. (1998) J. Biomol. NMR, 11, 31-43.

    Google Scholar 

  • Loria, J.P., Rance, M. and Palmer, A.G. (1999) J. Magn. Reson., 141, 180-184.

    Google Scholar 

  • Lukin, J.A., Gove, A.P., Talukdar, S.N. and Ho, C. (1997) J. Biomol. NMR, 9, 151-166.

    Google Scholar 

  • Meadows, R.P., Olejniczak, E.T. and Fesik, S.W. (1994) J. Biomol. NMR, 4, 79-96.

    Google Scholar 

  • Metzler, W.J., Constantine, K.L., Friedrichs, M.S., Bell, A.J., Ernst, E.G., Lavoie, T.B. and Mueller, L. (1993) Biochemistry, 32, 13818-13829.

    Google Scholar 

  • Montelione, G.T., Rios, C.B., Swapna, G.V.T. and Zimmerman, D.E. (1999) In Biological Magnetic Resonance, Volume 17: Structure, Computation and Dynamics in Protein NMR (Eds., Krishna, R. and Berliner, L.), Plenum Press, New York, NY, pp. 81-130.

    Google Scholar 

  • Moseley, H.N.B. and Montelione, G.T. (1999) Curr. Opin. Struct. Biol., 9, 635-642.

    Google Scholar 

  • Moy, F.J., Pisano, M.R., Chandra, P.K., Urbano, C., Killar, L.M., Sung, M.L. and Powers, R. (1997) J. Biomol. NMR, 10, 9-19.

    Google Scholar 

  • Olson Jr., J.B. and Markley, J.L. (1994) J. Biomol. NMR, 4, 385-410.

    Google Scholar 

  • Pham, T.-N. and Koide, S. (1998) J. Biomol. NMR, 11, 407-414.

    Google Scholar 

  • Sahu, S.C., Atreya, H.S., Chauhan, S., Bhattacharya, A., Chary, K.V.R. and Govil, G. (1999) J. Biomol. NMR, 14, 93-94.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 13585-13590.

    Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K., Senn, H. and Wüthrich, K. (1999) J. Am. Chem. Soc., 121, 844-848.

    Google Scholar 

  • Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217-236.

    Google Scholar 

  • Wittekind, M. and Mueller, L. (1993) J. Magn. Reson., B101, 201-205.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Zimmerman, D.E., Kulikowski, C., Wang, L.L., Lyons, B.A. and Montelione, G.T. (1994) J. Biomol. NMR, 4, 241-256.

    Google Scholar 

  • Zimmerman, D.E., Kulikowski, C.A., Huang, Y., Feng, W., Tashiro, M., Shimotakahara, S., Chien, C., Powers, R. and Montelione, G.T. (1997) J. Mol. Biol., 269, 592-610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atreya, H., Sahu, S., Chary, K. et al. A tracked approach for automated NMR assignments in proteins (TATAPRO). J Biomol NMR 17, 125–136 (2000). https://doi.org/10.1023/A:1008315111278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008315111278

Navigation