Skip to main content
Log in

The orientation of N-H...O=C and N-H...N hydrogen bonds in biological systems: How good is a point charge as a model for a hydrogen bonding atom?

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In order to design new ligands for protein-binding sites of unknownstructure, it would be useful to predict the likely sites of hydrogenbonding of an unknown protein fragment to a known molecule. The positions ofmaxima and minima in the electrostatic potential at appropriate distancesfrom the van der Waals surface were calculated for various small molecules,nucleic acid bases, peptide units and amino acid side chains containinggroups which can form the biologically important N-H...O=C andN-H...N hydrogen bonds. Their ability to predict the positions of H andO/N in hydrogen bonded complexes, as predicted by optimising theelectrostatic interactions of pairs of such molecules constrained by themolecular shapes, was assessed. It is shown that extrema in theelectrostatic potential around the isolated molecules give worthwhilepredictions for the locations of hydrogen bonding partners. For moleculesbound by a single N-H...O=C hydrogen bond, the electrostatic maximumassociated with the H is usually less than 1 Å from an acceptor atom,while a C=O electrostatic minimum is generally less than 1.5 Å fromthe hydrogen bond proton. However, a significant number of hydrogen bondsform to the opposite lone pair from the electrostatic minimum, in which casethe separation is up to 3.3 Å. This reflects the broad electrostaticpotential well around a carbonyl oxygen between the lone pair directions.The model predicts when neighbouring atoms drastically change the hydrogenbonding characteristics of an N-H or C=O group. Although the geometries ofhydrogen bonded complexes are influenced by the other van der Waals contactsbetween the molecules, particularly multiple hydrogen bonds, theseinfluences are constant when considering hydrogen bonding to a specificuncharacterised binding site. Hence, the consideration of stericallyaccessible electrostatic extrema will be useful in the design of newligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean, P.M., Molecular Foundations of Drug–Receptor Interaction, Cambridge University Press, Cambridge, U.K., 1987.

    Google Scholar 

  2. Jeffrey, G.A. and Saenger, W., Hydrogen Bonding in Biological Structures, Springer, Berlin, Germany, 1991.

    Google Scholar 

  3. Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 10 (1996) 607.

    Google Scholar 

  4. Taylor, R., Kennard, O. and Versichel, W., J. Am. Chem. Soc., 105 (1983) 5761.

    Google Scholar 

  5. Baker, E.N. and Hubbard, R.E., Prog. Biophys. Mol. Biol., 44 (1983) 5761.

    Google Scholar 

  6. Ippolito, J.A., Alexander, R.S. and Christianson, D.W., J. Mol. Biol., 215 (1990) 457.

    Google Scholar 

  7. Náray-Szabó, G. and Ferenczy, G.G., Chem. Rev., 95 (1995) 829.

    Google Scholar 

  8. Murray, J.S., Lane, P. and Politzer, P., J. Mol. Struct. (THEOCHEM), 209 (1990) 163.

    Google Scholar 

  9. Murray, J.S., Ranganathan, S. and Politzer, P., J. Org. Chem., 56 (1991) 3734.

    Google Scholar 

  10. Murray, J.S. and Politzer, P., J. Org. Chem., 56 (1991) 6715.

    Google Scholar 

  11. Kenny, P.W., J. Chem. Soc. Perkin Trans., 2 (1994) 199.

    Google Scholar 

  12. Pauling, L., Proc. Natl. Acad. Sci. USA, 14 (1928) 359.

    Google Scholar 

  13. Stone, A.J., Chem. Phys. Lett., 83 (1981) 233.

    Google Scholar 

  14. Stone, A.J. and Alderton, M., Mol. Phys., 56 (1985) 1047.

    Google Scholar 

  15. Buckingham, A.D. and Fowler, P.W., J. Chem. Phys., 79 (1983) 6426.

    Google Scholar 

  16. Buckingham, A.D. and Fowler, P.W., Can. J. Chem., 63 (1985) 2018.

    Google Scholar 

  17. Mitchell, J.B.O. and Price, S.L., Chem. Phys. Lett., 154 (1989) 267.

    Google Scholar 

  18. Mitchell, J.B.O., Nandi, C.L., Thornton, J.M., Price, S.L., Singh, J. and Snarey, M., J. Chem. Soc. Faraday Trans., 89 (1993) 2619.

    Google Scholar 

  19. Mitchell, J.B.O., Nandi, C.L., McDonald, I.K., Thornton, J.M. and Price, S.L., J. Mol. Biol., 239 (1994) 315.

    Google Scholar 

  20. Flanagan, K., Walshaw, J., Price, S.L. and Goodfellow, J.M., Protein Eng., 8 (1995) 109.

    Google Scholar 

  21. Price, S.L., Lo Celso, F., Treichel, J.A., Goodfellow, J.M. and Umrania, Y., J. Chem. Soc. Faraday Trans., 89 (1993) 3407.

    Google Scholar 

  22. Hobza, P. and Sandorfy, C., J. Am. Chem. Soc., 109 (1987) 1302.

    Google Scholar 

  23. Hurst, G.J.B., Fowler, P.W., Stone, A.J. and Buckingham, A.D., Int. J. Quantum Chem., 29 (1986) 1223.

    Google Scholar 

  24. Apaya, R.P., Lucchese, B., Price, S.L. and Vinter, J.G., J. Comput.-Aided Mol. Design, 9 (1995) 33.

    Google Scholar 

  25. Van der Wenden, E.M., Price, S.L., Apaya, R.P., IJzerman, A.P. and Soudijn, W., J. Comput.-Aided Mol. Design, 9 (1995) 44.

    Google Scholar 

  26. Frau, J. and Price, S.L., J. Comput.-Aided Mol. Design, 10 (1996) 107.

    Google Scholar 

  27. Faerman, C.H. and Price, S.L., J. Am. Chem. Soc., 112 (1990) 4915.

    Google Scholar 

  28. INSIGHT II, v. 2.3.0, Biosym Technologies, San Diego, CA, U.S.A., 1993.

  29. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  30. CADPAC5: The Cambridge Analytical Derivatives Package, Issue 5.0, 1992. A suite of quantum chemistry programs developed by R.D. Amos with contributions from I.L. Alberts, J.S. Andrews, S.M. Colwell, N.C. Handy, D. Jayatilaka, P.J. Knowles, R. Kobayashi, N. Koga, K.E. Laidig, P.E. Malsen, C.W. Murray, J.E. Rice, J. Sanz, D. Simandiras, A.J. Stone and M.-D. Su.

  31. Binkley, J.S., Pople, J.A. and Hehre, W.J., J. Am. Chem. Soc., 102 (1980) 939.

    Google Scholar 

  32. Stone, A.J., Popelier, P.L.A. and Wales, D.J., ORIENT: A program for calculating the electrostatic interactions between molecules, v. 3.0, University of Cambridge, Cambridge, U.K., 1994.

    Google Scholar 

  33. Spackman, M.A., J. Chem. Phys., 85 (1986) 6587.

    Google Scholar 

  34. Price, S.L. and Stone, A.J., J. Chem. Soc. Faraday. Trans., 88 (1992) 1755.

    Google Scholar 

  35. Taylor, R. and Kennard, O., J. Am. Chem. Soc., 104 (1982) 5063.

    Google Scholar 

  36. Desiraju, G.R., Acc. Chem. Res., 24 (1991) 290.

    Google Scholar 

  37. Mitchell, J.B.O. and Price, S.L., J. Comput. Chem., 11 (1990) 1217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apaya, R.P., Bondí, M. & Price, S.L. The orientation of N-H...O=C and N-H...N hydrogen bonds in biological systems: How good is a point charge as a model for a hydrogen bonding atom?. J Comput Aided Mol Des 11, 479–490 (1997). https://doi.org/10.1023/A:1007923124523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007923124523

Navigation