Skip to main content
Log in

Increased Calpain Expression Is Associated with Apoptosis in Rat Spinal Cord Injury: Calpain Inhibitor Provides Neuroprotection

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Calpain content was investigated in the lesion of rat spinal cord at 1, 4, 24, and 72 h following injury induced by the weight-drop (40 g-cm force) technique. Calpain content was increased in the lesion, and was highest at 24 h following injury. μCalpain mRNA level in the lesion was increased by 58.4% (p = 0.0135) at 24 h following trauma, compared to sham. Alterations in mRNA expression in the lesion increased bax/bcl-2 ratio by 20.8% (p = 0.0395) at this time point, indicating a commitment to apoptosis. Therapeutic effect of the calpain inhibitor E-64-d (1 mg/kg) was studied in SCI rats follwing administration for 24 h. Internucleosomal DNA fragmentation (apoptosis) was observed in SCI rats, but not in sham or E-64-d treated rats. These results indicate a new information that E-64-d has the therapeutic potential for inhibiting apoptosis in SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zhivotovsky, B., Burgess, D. H., Vanags, D. M., and Orrenius, S. 1997. Involvement of cellular proteolytic machinery in apoptosis. Biochem. Biophys. Res. Commun. 230:481-488.

    Google Scholar 

  2. Balentine, J. D., Hogan, E. L., Banik, N. L., and Perot, P. L. 1985. Calcium and the pathogenesis of spinal cord injury. In: Dacey, R. G., Winn, H. R., Rimel, R. W., and Jane, J. A. (Eds.), Trauma of the Central Nervous System, Raven Press, New York, pp. 285-295.

    Google Scholar 

  3. Happel, R. D., Smith, K. P., Banik, N. L., Powers, J. M., Hogan, E. L., and Balentine, J. D. 1981. Ca264-accumulation in experimental spinal cord trauma. Brain Res. 211:476-479.

    Google Scholar 

  4. Young, W. 1993. Secondary injury mechanisms in acute spinal cord injury. J. Emerg. Med. 11:13-22.

    Google Scholar 

  5. Banik, N. L., Matzelle, D. L., Gantt-Wilford, G., Osborne, A., and Hogan, E. L. 1997. Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury. Brain Res. 752:301-306.

    Google Scholar 

  6. Ray, S. K., Shields, D. C., Saido, T. C., Matzelle, D. C., Wilford, G. G., Hogan, E. L., and Banik, N. L. 1999. Calpain activity and translational expression increased in spinal cord injury. Brain Res. 816:375-380.

    Google Scholar 

  7. Ray, S. K., Wilford, G. G., Crosby, C. V., Hogan, E. L., and Banik, N. L. 1999. Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res. 829:18-27.

    Google Scholar 

  8. Jordan, J., Galindo, M. F., and Miller, R. J. 1997. Role of calpain-and interleukin-1βconverting enzyme-like proteases in the β-amyloid-induced death of rat hippocampal neurons in culture. J. Neurochem. 68:1612-1621.

    Google Scholar 

  9. Nath, R., Raser, K. J., McGinnis, K., Nadimpalli, R., Stafford, D., and Wang, K. K. 1996. Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. NeuroReport 8:249-255.

    Google Scholar 

  10. Ray, S. K., Fidan, M., Nowak, M. W., Wilford, G. G., Hogan, E. L., and Banik, N. L. 2000. Oxidative stress and Ca2+influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res. 852:326-334.

    Google Scholar 

  11. Croall, D. E. and Demartino, G. N. 1991. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol. Rev. 71:813-847.

    Google Scholar 

  12. Suzuki, K. 1987. Calcium activated neutral protease: domain structure and activity regulation. Trends Biochem. Sci. 12:103-105.

    Google Scholar 

  13. Suzuki, K., Imajoh, S., Emori, Y., Kawasaki, H., Minami, Y., and Ohno, S. 1987. Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Lett. 220:271-277.

    Google Scholar 

  14. Pontremoli, S., Salamino, F., Sparatore, B., De Tullio, R., Pontremoli, R., and Melloni, E. 1988. Characterization of the calpastatin defect in erythrocytes from patients with essential hypertension. Biochem. Biophys. Res. Commun. 157:867-874.

    Google Scholar 

  15. Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Salamino F., and Horecker, B. L. 1991. Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains. Arch. Biochem. Biophys. 288:646-652.

    Google Scholar 

  16. Baki, A., Tompa, P., Alexa, A., Molnar, O., and Friedrich, P. 1996. Autolysis parallels activation of μcalpain. Biochem. J. 318:897-901.

    Google Scholar 

  17. Merry, D. E. and Korsmeyer, S. J. 1997. Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20:245-267.

    Google Scholar 

  18. Gillardon, F., Lenz, C., Waschke, K. F., Krajewski, S. Reed, J. C., Zimmermann, M., and Kuschinsky, W. 1996. Altered expression of Bcl-2, Bcl-x, Bax, and c-Fos co-localizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol. Brain Res. 40:254-260.

    Google Scholar 

  19. Mu, X., He, J., Anderson, D. W., Trojanowski, J. Q., and Springer, J. E. 1996. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann. Neurol. 40:379-386.

    Google Scholar 

  20. Pike, B. R., Zhao, X. R., Newcomb, J. K., Posmantur, R. M., Wang, K. K. W., and Hayes, R. L. 1998. Regional calpain and caspase-3 proteolysis of α-spectrin after traumatic brain injury. NeuroReport 9:2437-2442.

    Google Scholar 

  21. Steiner, H., Capell, A., Pesold, B., Citron, M., Kloetzel, P. M., Selkoe, D. J., Romig, H., Mendla, K., and Haass, C. Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. 1998. J. Biol. Chem. 273:32322-32331.

    Google Scholar 

  22. Buki, A., Okonkwo, D. O., Wang, K. K. W., and Povlishock, J. T. 2000. Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20:2825-2834.

    Google Scholar 

  23. Wang, K. K. W. 2000. Calpain and caspase: can you tell the difference? Trends Neurosci. 23:20-26.

    Google Scholar 

  24. Chan, S. L. and Mattson, M. P. 1999. Caspase and calpain substrates: Roles in synaptic plasticity and cell death. J. Neurosci. Res. 58:167-190.

    Google Scholar 

  25. Porn-Ares, M. I., Samali, A., and Orrenius, S. 1998. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differen. 5:1028-1033.

    Google Scholar 

  26. Kato, M., Nonaka, T., Maki, M., Kikuchi, H., and Imajoh-Ohmi, S. 2000. Caspases cleave the amino-terminal calpain inhibitory unit of calpastatin during apoptosis in human Jurkat T cells. J. Biochem. 127:297-305.

    Google Scholar 

  27. Canu, N., Barbato, C., Ciotti, M. T., Serafino, A., Dus, L., and Calissano, P. 2000. Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurons undergoing apoptosis. J. Neurosci. 20:589-599.

    Google Scholar 

  28. Shimizu, S., Eguchi, Y., Kamiike, W., Matsuda, H., and Tsujimoto, Y. 1996. Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 12:2251-2257.

    Google Scholar 

  29. Korhonen, L., Hamner, S., Olsson, P. A., and Lindholm, D. 1997. Bcl-2 regulates the levels of the cysteine proteases ICH and CPP32/Yama in human neuronal precursor cells. Eur. J. Neurosci. 9:2489-2496.

    Google Scholar 

  30. Cheng, E. H. Y., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., Ueno, K., and Hardwick, J. M. 1997. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966-1968.

    Google Scholar 

  31. Kirsch, D. G., Doseff, A., Chau, B. N., Lim, D. S., de Souza-Pinto, N. C., Hansford, R., Kastan, M. B., Lazebnik, Y. A., and Hardwick, J. M. 1999. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274:21155-21161.

    Google Scholar 

  32. Chua, B. T., Guo, K., and Li, P. 2000. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J. Biol. Chem. 275:5131-5135.

    Google Scholar 

  33. Wolf, B. B. and Green, D. R. 1999. Suicidal tendencies: Apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274:20049-20052.

    Google Scholar 

  34. Robertson, G. S. Crocker, S. J., Nicholson, D. W., and Schulz, J. B. 2000. Neuroprotection by the inhibition of apoptosis. Brain Pathol. 10:283-292.

    Google Scholar 

  35. Kampfl, A., Posmantur, R. M., Zhao, X., Schmutzhard, E., Clifton, G. L., and Hayes, R. L. 1997. Mechanisms of calpain proteolysis following traumatic brain injury-implications for pathology and therapy-a review and update. J. Neurotrauma 14:121-134.

    Google Scholar 

  36. Banik, N., Ray, S., Woods, R., Matzelle, D., Wilford, G., and Hogan, E. 1999. High bax/ bcl-2 ratio and calpain activation cause apoptosis in SCI. J. Neurochem. 72(Abstract A):S52.

    Google Scholar 

  37. Chakrabarti, A. K., Yoshida, Y., Powers, J. M., Singh, I., Hogan, E. L., and Banik, N. L. 1988. Calcium-activated neutral proteinases in rat brain and subcellular fractions. J. Neurosci. Res. 20:351-358.

    Google Scholar 

  38. Allen, A. R. 1911. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: a preliminary report. J. Am. Med. Assoc. 57:878-880.

    Google Scholar 

  39. Perot, P. L., Lee, W. A., Hsu, C. Y., and Hogan, E. L. 1987. Therapeutic model for experimental spinal cord injury in rat central nervous system. Trauma 4:149-159.

    Google Scholar 

  40. Raff, T., van der Giet, M., Endemann, D., Wiederholt, T., and Paul, M. 1997. Design and testing of β-actin primers for RTPCR that do not co-amplify processed pseudogenes. BioTechniques 23:456-460.

    Google Scholar 

  41. Han, J., Sabbatini, P., Perez, D., Rao, L., Modha, D., and White, E. 1996. The E1b 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev. 10:461-477.

    Google Scholar 

  42. Sato, T., Irie, S., Krajewski, S., and Reed, J. C. 1994. Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein. Gene 140:291-292.

    Google Scholar 

  43. Shearer, T. R., Throneburg, D. B., and Shih, M. 1996. In vitro precipitation of rat lens crystallins by calpain I-A calpain requiring low amounts of calcium for activation. Ophthalmic Res. 28:109-114.

    Google Scholar 

  44. DeLuca, C. I., Davies, P. L., Samis, J. A., and Elce, J. 1993. Molecular cloning and bacterial expression of cDNA for rat calpain II 80 kD subunit. Biochim. Biophys. Acta 1216:81-93.

    Google Scholar 

  45. Ishida, S., Emori, Y., and Suzuki, K. 1991. Rat calpastatin has diverged primary sequence from other mammalian calpastatins but retains functionally important sequences. Biochim. Biophys. Acta 1088:436-438.

    Google Scholar 

  46. Kroemer, G. 1997. The proto-oncogene bcl-2 and its role in regulating apoptosis. Nat. Med. 3:614-620.

    Google Scholar 

  47. Gillardon, F., Wickert, H., and Zimmermann, M. 1994. Differential expression of bcl-2 and bax mRNA in axotomized dorsal root ganglia of young and adult rats. Eur. J. Neurosci. 6:1641-1644.

    Google Scholar 

  48. Nunez, G., Benedict, M. A., Hu, Y. M., and Inohara, N. 1998. Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237-3245.

    Google Scholar 

  49. Blomgren, K., Mcrae, A., Bona, E., Saido, T. C., Karlsson, J. O., and Hagberg, H. 1995. Degradation of fodrin and MAP2 after neonatal cerebral hypoxic-ischemia. Brain Res. 684:136-142.

    Google Scholar 

  50. Buisson, A., Nicole, O., Docagne, F., Sartelet, H., MacKenzie, E. T., and Vivien, D. 1998. Upregulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1. FASEB J. 12:1683-1691.

    Google Scholar 

  51. Adebodun, F., Scott, C. E., Cunningham, C., Bustamante, P. M., Bradshaw, A., Ping, L., and Williams, K. R. 2000. Elevated levels of Ca(II) modulate the activity and inhibition of serine proteases: Implication in the mechanism of apoptosis. Cell Biochem. Function 18:59-66.

    Google Scholar 

  52. Kam, C. M., Hudig, D., and Powers, J. C. 2000. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim. Biophys. Acta 1477:307-323.

    Google Scholar 

  53. Li, G. L., Brodin, G., Farooque, M., Funa, K., Holtz, A., Wang, W. L., and Olsson, Y. 1996. Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J. Neuropathol. Exp. Neurol. 55:280-289.

    Google Scholar 

  54. Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. W., Dong, H. X., Wu, Y. J., Fan, G. S., Jacquin, M. F., Hsu, C. Y., and Choi, D. W. 1997. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 17:5395-5406.

    Google Scholar 

  55. Lou, J., Lenke, L. G., Ludwig, F. J., and O'Brien, M. F. 1998. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 36:683-690.

    Google Scholar 

  56. Springer, J. E., Azbill, R. D., and Knapp, P. E. 1999. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med. 5:943-946.

    Google Scholar 

  57. McIntosh, T. K., Saatman, K. E., and Ragupathi, R. 1997. Calcium and the traumatic CNS injury: Cellular and molecular mechanisms. The Neuroscientist 3:169-175.

    Google Scholar 

  58. Lipton, S. A. and Nicotera, P. 1998. Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium 23:165-171.

    Google Scholar 

  59. Hogan, E. L., McIver, W., Krall, A., and Banik, N. L. 1985. Subcellular distribution of calcium in spinal cord trauma. Trans. Am. Soc. Neurochem. 16:132.

    Google Scholar 

  60. Amar, A. P. and Levy, M. L. 1999. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44:1027-1040.

    Google Scholar 

  61. Springer, J. E., Azbill, R. D., Kennedy, S. E., George, J., and Geddes, J. W. 1997. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: Attenuation with riluzole pretreatment. J. Neurochem. 69:1592-1600.

    Google Scholar 

  62. Ray, S., Davis, B., Shields, D., Matzelle, D., Wilford, G., Hogan, E. L., and Banik, N. L. 1998. Increased calpain expression, cell death, and neuroprotection in rat spinal cord injury. J. Neurochem. 70(Abstract B):S63.

    Google Scholar 

  63. Banik, N. L., Shields, D. C., Ray, S. K., and Hogan, E. L. 1999. The Pathophysiological Role of Calpain in Spinal Cord Injury. In: Wang, K. K. W., and Yuen, P. (Eds.), Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, Taylor & Francis, Philadelphia, pp. 211-227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, S.K., Matzelle, D.D., Wilford, G.G. et al. Increased Calpain Expression Is Associated with Apoptosis in Rat Spinal Cord Injury: Calpain Inhibitor Provides Neuroprotection. Neurochem Res 25, 1191–1198 (2000). https://doi.org/10.1023/A:1007631826160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007631826160

Navigation