Skip to main content
Log in

Visualization and Analysis of Electroosmotic Flow in Hairless Mouse Skin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To identify the physiological structures in hairless mouseskin responsible for the generation of electroosmotic flow duringiontophoresis. Also, to determine the effects of changing the pH of thecontacting solution on the magnitude of electroosmotic flow in thesestructures.Methods. Localized diffusive and iontophoretic fluxes of a neutralmolecule, hydroquinone (HQ), across hairless mouse skin were quantifiedusing scanning electrochemical microscopy (SECM). Theiontophoretic flux was determined as a function of the direction of theapplied current and pH of the contacting solution.Results. SECM images of HQ transport recorded during iontophoresisat moderate current densities (±0.1 mA/cm2) demonstrate that electroosmotic flow is localized to hair follicles. The direction of flow isfrom anode to cathode at pH > 3.5 and from cathode to anode atpH <3.5.Conclusions. Electroosmotic flow through hair follicles is an efficientand controllable means of transporting small, electrically neutral moleculesacross hairless mouse skin. Transport through the appendages issensitive to the pH of the solution in contact with the skin. The isoelectricpoint of hair follicles, pI, is estimated to be 3.5 from the dependenceof electroosmotic flow on the solution pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. L. Miller, C. J. Kolaskie, G. A. Smith, and J. Rivier. Transdermal iontophoresis of gonadotropin releasing hormone and two analogues. J. Pharm. Sci. 79:490–493 (1990).

    Google Scholar 

  2. K. S. Bhatia and J. Singh. Mechanism of transport enhancement of LHRH through porcine epidermis by terpenes and iontophoresis: permeability and lipid extraction studies. Pharm. Res. 15:1857–1862 (1998).

    Google Scholar 

  3. S. Mitragotri, D. Blankschtein, and R. Langer. Ultrasound-mediated transdermal protein delivery. Science 269:850–853 (1995).

    Google Scholar 

  4. R. H. Brand, A. Wahl, and P. L. Iversen. Effects of size and sequence on the iontophoretic delivery of oligonucleotides. J. Pharm. Sci. 87:49–52 (1998).

    Google Scholar 

  5. K. Oldenburg, K. T. Vo, G. A. Smith, and H. E. Selick. Iontophoretic delivery of oligonucleotides across full thickness hairless mouse skin. J. Pharm. Sci. 84:915–921 (1995).

    Google Scholar 

  6. A. K. Banga. Electrically Assisted Transdermal and Topical Drug Delivery, Taylor and Francis, Pennsylvania, 1998.

    Google Scholar 

  7. S. K. Gupta, M. Southam, G. Sathyan, and M. Klausner. Effect of current density on pharmacokinetics following continuous or intermittent input from a fentanyl electrotransport system. J. Pharm. Sci. 87:976–981 (1998).

    Google Scholar 

  8. J. A. Tamada, N. J. V. Bohannon, and R. O. Potts. Measurement of glucose in diabetic subjects using non-invasive transdermal extraction. Nature Med. 1:1198–1201 (1995).

    Google Scholar 

  9. H. A. Abramson and M. G. Engle. Skin reactions. XII. Patterns produced in the skin by electrophoresis of dyes. Arch. Dermatol. Syphilol. 44:190–200 (1941).

    Google Scholar 

  10. S. Grimmes. Pathways of ionic flow through human skin in vivo. Acta Derm. Venereol. 64:93–98 (1984).

    Google Scholar 

  11. R. R. Burnette and B. Ongpipattanakul. Characterization of the pore transport properties and tissue alteration of excised human skin during iontophoresis. J. Pharm. Sci. 77:132–137 (1988).

    Google Scholar 

  12. C. Cullander and R. H. Guy. Sites of iontophoretic current flow into the skin: Identification and characterization with the vibrating probe electrode. J. Invest. Dermatol. 97:55–64 (1991).

    Google Scholar 

  13. E. R. Scott, A. I. Laplaza, H. S. White, and J. B. Phipps. Transport ionic species in skin: contribution of pores to the overall skin conductance. Pharm. Res. 10:1699–1709 (1993).

    Google Scholar 

  14. M. J. Pikal. The role of electroosmosis in transdermal iontophoresis. Adv. Drug Del. Rev. 9:201–237 (1992).

    Google Scholar 

  15. M. B. Delgado-Charro and R. H. Guy. Characterization of convective solvent flow during iontophoresis. Pharm. Res. 11:929–935 (1994).

    Google Scholar 

  16. K. D. Peck, V. Srinivasan, S. K. Li, W. I. Higuchi, and A. H. Ghanem. Quantitative description of the effect of molecular size upon electroosmotic flux enhancement during iontophoresis for a synthetic membrane and human epidermal membrane. J. Pharm. Sci. 85:781–788 (1996).

    Google Scholar 

  17. R. Y. Lin, Y. C. Chien, and W. Y. Chen. The role of electroosmotic flow on in vitro transdermal iontophoresis. J. Contr. Rel. 43: 23–33 (1997).

    Google Scholar 

  18. S. M. Sims and W. I. Higuchi. Baseline studies on iontophoretic transport in hairless mouse skin: the effect of applied voltage drop and pH on the iontophoresis of a model weak electrolyte. J. Membr. Sci. 49:305–320 (1990).

    Google Scholar 

  19. G. F. Odland. Structure of the Skin. In L. A. Goldsmith (ed.). Biochemistry and Physiology of the Skin, Oxford University Press, Oxford, 1983.

    Google Scholar 

  20. B. D. Bath, R. D. Lee, H. S. White, and E. R. Scott. Imaging molecular transport in porous membranes. Observation and analysis of electroosmotic flow in individual pores using the scanning electrochemical microscope. Anal. Chem. 70:1047–1058 (1998).

    Google Scholar 

  21. E. R. Scott, H. S. White, and J. B. Phipps. Iontophoretic transport through porous membranes using scanning electrochemical microscopy: application to in vitro studies of ion fluxes through skin. Anal. Chem. 65:1537–1545 (1993).

    Google Scholar 

  22. R. C. Weast and M. J. Astle (eds.). Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1981.

    Google Scholar 

  23. R. D. Lee, H. S. White, E. R. Scott. Visualization of iontophoretic transport paths in cultured and animal skin models. J. Pharm. Sci. 85:1186–1190 (1996).

    Google Scholar 

  24. R. R. Burnette and D. Marrero. Comparison between the iontophoretic and passive transport of thyrotropin releasing hormone across excised nude mouse skin. J. Pharm. Sci. 75:738–743 (1986).

    Google Scholar 

  25. M. J. Pikal and S. Shah. Transport mechanisms in iontophoresis. II. Electroosmotic flow and transference number measurements hairless mouse skin. Pharm. Res. 7:213–221 (1990).

    Google Scholar 

  26. R. R. Burnette and B. Ongpipattanakul. Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 76:765–773 (1987).

    Google Scholar 

  27. A. Luzardo-Alverez, M. Rodríguez-Fernández, J. Blanco-Méndez, R. H. Guy, and M. B. Delgado-Charro. Iontophoretic permselectivity of mammalian skin: Characterization of hairless mouse and porcine membrane models. Pharm. Res. 15:984–987 (1998).

    Google Scholar 

  28. V. Srinivasan and W. I. Higuchi. A model for iontophoresis incorporating the effect of convective solvent flow. Int. J. Pharm., 60:133–137 (1990).

    Google Scholar 

  29. R. L. Bronaugh, R. F. Stewart, and E. R. Congdon. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol. Appl. Pharmacol. 62:481–489 (1982).

    Google Scholar 

  30. J. Crank, The Mathematics of Diffusion, 2nd Edition, Oxford Science Publications, Oxford, 1975, page 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bath, B.D., White, H.S. & Scott, E.R. Visualization and Analysis of Electroosmotic Flow in Hairless Mouse Skin. Pharm Res 17, 471–475 (2000). https://doi.org/10.1023/A:1007589306661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007589306661

Navigation