Skip to main content
Log in

Respirable PLGA Microspheres Containing Rifampicin for the Treatment of Tuberculosis: Manufacture and Characterization

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Particles with aerodynamic diameters of 1–5μm deposit in the periphery of the lungs and are phagocytized by alveolarmacrophages, the primary site of Mycobacterium tuberculosisinfection. Aerosols of biodegradable polymeric microspheres containingantitubercular agents may be delivered to the lungs to improve the treatmentof tuberculosis.

Methods. Poly(lactide-co-glycolide) (PLGA) microspherescontaining rifampicin were prepared using solvent evaporation and spraydrying methods. The solvent evaporation process was optimized usingfactorial experimental design and surface response methodology. Themorphology, particle size, drug loading, and dissolution of microspheres wasevaluated.

Results. The spray dried rifampicin loaded PLGAmicroparticles were shriveled, unlike the spherical particles produced bysolvent evaporation. Drug loadings of 20;pc and 30;pc were achieved forsolvent evaporation and spray dried products, respectively. The particlesprepared by solvent evaporation and spray drying had 3.45 μm and 2.76μm median diameters by volume, respectively.

Conclusions. Respirable rifampicin loaded PLGAmicrospheres were produced by both solvent evaporation and spray dryingmethods. These particles are being evaluated in an animal model oftuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Ho and L. W. Riley. Defenses against tuberculosis. In R. G. Crystal and J. B. West (eds.), THE LUNG: Scientific Foundations, Lippincott-Raven Publishers, Philadelphia, 1997, pp. 2381–2394.

    Google Scholar 

  2. J. H. Grosset. Bacteriology of tuberculosis. In L. B. Reichman and E. S. Hershfield (eds.), Tuberculosis: A Comprehensive International Approach, Marcel Dekker, Inc., New York, 1993, pp. 49–74.

    Google Scholar 

  3. M. T. Kenny and B. Srates. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab. Rev. 12:159–218 (1981).

    Google Scholar 

  4. L. R. Beck, D. R. Cowsar, D. H. Lewis, R. J. Cosgrove, C. T. Riddle, S. L. Lowry, and T. Epperly. A new long-acting injectable microcapsule system for the administration of progesterone. Fertil. Steril. 31:545–551 (1979).

    Google Scholar 

  5. B. W. Wagenaar and B. W. Müller. Piroxicam release from spraydried biodegradable microspheres. Biomaterials 15:49–54 (1994).

    Google Scholar 

  6. G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters, John Wiley & Sons, New York, 1978.

    Google Scholar 

  7. G. E. P. Box and D. W. Behnken. Some new three level designs for the study of quantitative variables. Technometrics 2:455–475 (1960).

    Google Scholar 

  8. P. C. Reist. Aerosol Science and Technology, McGraw-Hill, Inc., New York, 1993.

    Google Scholar 

  9. A. Weber, K. E. Opheim, A. L. Smith, and K. Wong. High-pressure liquid chromatographic quantitation of rifampicin and its two major metabolites in urine and serum. Rev. Infect. Diseases 5:S433–S439 (1983).

    Google Scholar 

  10. E. B. Denkbas, X. Kaitian, A. Tuncel, and E. Piskin. Rifampicin-carrying poly(D,L-lactide) microspheres: Loading and release. J. Biomat. Sci., Polym. Ed. 6:815–825 (1994).

    Google Scholar 

  11. G. Derringer and R. Suich. Simultaneous optimization of several response variables. J. Quality Tech. 12:214–219 (1980).

    Google Scholar 

  12. M. Sacchetti and M. M. Van Oort. Spray-drying and supercritical fluid particle generation techniques. In A. J. Hickey (ed.), Inhalation Aerosols: Physical and Biological Basis for Therapy, Marcel Dekker, Inc., New York, 1996, pp. 337–384.

    Google Scholar 

  13. F. Pavanetto, B. Conti, I. Genta, and P. Giunchedi. Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. Int. J. Pharm. 84:151–159 (1992).

    Google Scholar 

  14. G. Spenlehauer, M. Vert, J. P. Benoit, and A. Boddaert. In vitro and in vivo degradation of poly(D,L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials 10:557–563 (1989).

    Google Scholar 

  15. R. Bodmeier and H. Chen. Preparation of biodegradable poly(· -+) lactide microparticles using a spray-drying technique. J. Pharmacol. 40:754–757 (1988).

    Google Scholar 

  16. J. K. Lalla and K. Sapna. Biodegradable microspheres of poly(DL-lactic acid) containing piroxicam as a model drug for controlled release via the parenteral route. J. Microencapsulation 10:449–460 (1993).

    Google Scholar 

  17. T. Sato, M. Kanke, H. G. Schroeder, and P. P. DeLuca. Porous biodegradable microspheres for controlled drug delivery. I. Assessment of processing conditions and solvent removal techniques. Pharm. Res. 5:21–30 (1988).

    Google Scholar 

  18. J. P. Benoit and C. Thies. Microsphere morphology. In S. Benita (ed.), Microencapsulation: Methods and Industrial Applications, Marcel Dekker, Inc., New York, 1996, pp. 133–154.

    Google Scholar 

  19. S. Izumikawa, S. Yoshioka, Y. Aso, and Y. Takeda. Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. J. Cont. Rel. 15:133–140 (1991).

    Google Scholar 

  20. E. Celikkaya, E. B. Denkbas, and E. Piskin. Rifampicin carrying poly(D,L-lactide)/poly(ethylene glycol) microspheres: loading and release. Artif. Organs 20:743–751 (1996).

    Google Scholar 

  21. E. L. Barrow, G. A. Winchester, J. K. Staas, D. C. Quenelle, and W. W. Barrow. Use of microsphere technology for targeted delivery of rifampicin to Mycobacterium tuberculosis-infected macrophages. Antimicrob. Agents Chemother. 42:2682–2689 (1998).

    Google Scholar 

  22. R. Jeyanthi, R. C. Mehta, B. C. Thanoo, and P. P. DeLuca. Effect of processing parameters on the properties of peptide-containing PLGA microspheres. J. Microencapsulation 14:163–174 (1997).

    Google Scholar 

  23. A. J. Hickey, S. Suarez, M. Bhat, P. O'Hara, C. B. Lalor, K. Atkins, R. Hopfer, and D. N. McMurray. Efficacy of rifampicinpoly( lactide-co-glycolide) microspheres in treating tuberculosis. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery VI, Interpharm Press, Inc., Buffalo Grove, IL, 1998, pp. 201–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Hara, P., Hickey, A.J. Respirable PLGA Microspheres Containing Rifampicin for the Treatment of Tuberculosis: Manufacture and Characterization. Pharm Res 17, 955–961 (2000). https://doi.org/10.1023/A:1007527204887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007527204887

Navigation