Skip to main content
Log in

Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The review of the data on karyology and DNA content in Acipenseriformes shows that both extant families, the Polyodontidae and Acipenseridae, originated from a tetraploid ancestor which probably had a karyotype consisting of 120 macro- and microchromosomes and DNA content of about 3.2–3.8 pg per nucleus. The tetraploidization of the presumed 60-chromosome ancestor seems to have occurred at an early time of evolution of the group. The divergence of the Acipenseridae into Scaphirhyninae and Acipenserinae occurred without polyploidization. Within the genus Acipenser, polyploidization was one of the main genetic mechanisms of speciation by which 8n and 16n-ploid species were formed. Individual gene trees constructed for sequenced partial fragments of the 18S rRNA (230 base pairs, bp), 12S rRNA (185 bp), 16S rRNA (316 bp), and cytochrome b (270 bp) genes of two Eurasian (A. baerii and A. ruthenus) and two American (A. transmontanus and A. medirostris) species of Acipenser, Huso dauricus, Pseudoscaphirhynchus kaufmanni, Scaphirhynchus albus, and Polyodon spathula showed a low level of resolution; the analysis of a combined set of data for the four genes, however, gave better resolution. Our phylogeny based on molecular analysis had two major departures from existing morphological hypotheses: Huso dauricus is a sister-species to Acipenser instead of being basal to all acipenseriforms, and Scaphirhynchus and Pseudoscaphirhynchus do not form a monophyletic group. The phylogenetic tree constructed for the cytochrome b gene fragments (with inclusion of 7 additional species of Acipenser) supported the conclusion that octoploid species appeared at least three times within Acipenser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Allendorf, F.W. & G.H. Thorgaard. 1984. Tetraploidy and the evolution of salmonid fishes. pp. 1–53. In: B.J. Turner (ed.) Evolutionary Genetics of Fishes, Plenum Press, New York.

    Google Scholar 

  • Antipa, G. 1909. Fauna ichtiologica a României. Publicatiunile Fondul Vasilie Adamanchi, Academia Româna, Bucureşti 16: 1–294.

    Google Scholar 

  • Antoniu-Murgoci, A. 1946. Sur l'hybridation chez les estrogeons et description de deux formes nouvelles. Acad. Roum. Bul. Sec. Sci. 29: 308–313.

    Google Scholar 

  • Arefjev, V.A. 1983. Polykaryogrammic analysis of the ship Acipenser nudiventris Lovetsky (Acipenseridae, Chondrostei). Voprosy Ikhtiologii 23: 209–218 (in Russian, English translation J. Ichthyol. 23: 26–35).

    Google Scholar 

  • Arefjev, V.A. 1989a. Study of karyotype of the sturgeon Acipenser gueldenstaedti Brandt (Chondrostei). Tsitologia i Genetika 23: 7–10 (in Russian).

    Google Scholar 

  • Arefjev, V.A. 1989b. Karyotype variability in successive generations after hybridization between the great sturgeon, Huso huso (L.), and the sterlet, Acipenser ruthenus (L.). J. Fish Biol. 35: 819–828.

    Google Scholar 

  • Arefjev, V.A. 1991. Cytogenetic aspects of differences in the quality of spawners of reciprocal hybrids between bester and beluga sturgeon. pp. 134–150. In: A.D. Gershanovich (ed.) Biological Principles of Commercial Aquaculture of Sturgeons, VNIRO Publishing, Moscow (in Russian).

    Google Scholar 

  • Arefjev, V.A. 1993. NOR-banding studies of Acipenser baeri karyotype. pp. 30–31. In: International Symposium on Sturgeons, Abstract Bulletin, September 6–11, 1993, VNIRO, Moscow.

    Google Scholar 

  • Arefjev, V.A. & O.P. Filippova. 1993. Karyotypic analysis of the hybrid between Russian and Siberian sturgeon in relation to its supposed fertility and to cytogenetic aspects of hybridization in Acipenseridae. pp. 80–81. In: International Symposium on Sturgeons, Abstract Bulletin, September 6–11, VNIRO, Moscow.

    Google Scholar 

  • Arefjev, V.A. & A.I. Nikolaev. 1991. Cytological analysis of the reciprocal hybrids between low-and high-chromosome acipenserids, the great sturgeon, Huso huso (L.), and the Russian sturgeon, Acipenser gueldenstaedti Brandt. Cytologia 56: 495–502.

    Google Scholar 

  • Arlati, G., L.A. Belysheva & T.I. Kaydanova. 1994. Karyologic analysis of Acipenser naccarii (Bonaparte). pp. 119–123. In: A.D. Gershanovich & T.I.J. Smith (ed.) Proceedings of the International Symposium on Sturgeons, 6–11 September 1993, VNIRO Publishing, Moscow.

    Google Scholar 

  • Artyukhin, E.N. 1994. On the relationship of the Amur sturgeon, Acipenser schrencki. Sturgeon Quart. 2(3): 7.

    Google Scholar 

  • Artyukhin, E.N. 1995. On biogeography and relationships within the genus Acipenser. Sturgeon Quart. 3(2): 6–8.

    Google Scholar 

  • Artyukhin, E.N. & A.E. Andronov. 1990. A morphological study of the green sturgeon, Acipenser medirostris (Chondrostei, Acipenseridae), from the Tumnin (Datta) River and some aspects of the ecology and zoogeography of Acipenseridae. Zoologicheskii Zhurnal 69: 81–91 (in Russian, English translation J. Ichthyol. 30: 11–21).

    Google Scholar 

  • Asahida, T. & H. Ida. 1989. Karyological notes on four sharks in the order Carcharhiniformes. Japan. J. Ichthyol. 36: 275–280.

    Google Scholar 

  • Asahida, T. & H. Ida. 1990. Karyotypes of two rays, Torpedo tokionis and Dasyatis matsubarai, and their systematic relationships. Japan. J. Ichthyol. 37: 71–75.

    Google Scholar 

  • Asahida, T., H. Ida & T. Inoue. 1988. Karyotypes and cellular contents of two sharks in the family Scyliorhinidae. Japan. J. Ichthyol. 35: 215–219.

    Google Scholar 

  • Asahida, T., H. Ida, H. Terashima & H.Y. Chang. 1993. The karyotype and cellular DNA content of a ray, Mobula japonica. Japan. J. Ichthyol. 40: 317–322.

    Google Scholar 

  • Avise, J.C. 1992. Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62–76.

    Google Scholar 

  • BĂnĂrescu, P. 1964. Pisces-Osteichthyes. Fauna Republicii Populare Romîne 13, Editura Academiei Republicii Populare Romîne, Bucureşti. 962 pp.

    Google Scholar 

  • Bartley, D.M., G.A.E. Gall & B. Bentley. 1985. Preliminary description of the genetic structure of white sturgeon, Acipenser transmontanus, in the Pacific North-West. pp. 105–109. In: F.P. Binkowski & S.I. Doroshov (ed.) North American Sturgeons: Biology and Aquaculture Potential, Dr W. J. Junk Publishers, Dordrecht.

    Google Scholar 

  • Bemis, W.E., E. Findeis & L. Grande. 1997. An overview of Acipenseriformes. Env. Biol. Fish. (this volume).

  • Berg, L.S. 1905. Fishes of Turkestan. Scientific results of the Aral expedition, No. 6. St. Petersburg. 261 pp. (in Russian).

  • Berg, L.S. 1948a. On the position of the Acipenseriformes in the system of fishes. Trudy Zoologicheskogo Instituta 7: 7–57 (in Russian).

    Google Scholar 

  • Berg, L.S. 1948b. The freshwater fishes of the USSR and adjacent countries, Vol. 1, Part 1. Akademia Nauk USSR, Moscow & Leningrad (in Russian, English translation published by Israel Program for Scientific Translations, Jerusalem. 505 pp.)

    Google Scholar 

  • Bernardi, G., P. Sordino & D.A. Powers. 1992. Nucleotide sequence of the 18S ribosomal ribonucleic acid gene from two teleosts and two sharks and their molecular phylogeny. Mol. Mar. Biol. Biotechnol. 1: 187–194.

    Google Scholar 

  • Bernardi, G. & D.A. Powers. 1992. Molecular phylogeny of the prickly shark, Echinorhinus cookei, based on a nuclear (18S rRNA) and a mitochondrial (cytochrome b) gene. Mol. Phylogenet. Evol. 1: 161–167.

    Google Scholar 

  • Bidwell, C.A., K.J. Kroll, E. Severud, S.I. Doroshov & D.M. Carlson. 1991. Identification and preliminary characterization of white sturgeon (Acipenser transmontanus) vitellogenin mRNA. Gen. Comp. Endocrinol. 83: 415–424.

    Google Scholar 

  • Birstein, V.J. 1987. Cytogenetic and molecular aspects of vertebrate evolution. Nauka Press, Moscow. 284 pp. (in Russian).

    Google Scholar 

  • Birstein, V.J. 1993a. Sturgeons and paddlefishes: threatened fishes in need of conservation. Cons. Biol. 7: 773–787.

    Google Scholar 

  • Birstein, V.J. 1993b. Is Acipenser medirostris one or two species? Sturgeon Quart. 1(2): 8.

    Google Scholar 

  • Birstein, V.J. & R. DeSalle. 1997. Molecular phylogeny of Acipenserinae. Mol. Phylogenet. Evol. 7 (in press).

  • Birstein, V.J., A.I. Poletaev & B.F. Goncharov. 1993. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14: 377–383.

    Google Scholar 

  • Birstein, V.J. & V.P. Vasiliev. 1987. Tetraploid-octaploid relationships and karyological evolution in the order Acipenseriformes (Pisces). Karyotypes, nucleoli, and nucleolus-organizer region in four acipenserid species. Genetica 73: 3–12.

    Google Scholar 

  • Blacklidge, K.H. & C.A. Bidwell. 1993. Three ploidy levels indicated by genome quantification in Acipenseriformes of North America. J. Hered. 84: 427–430.

    Google Scholar 

  • Bogart, J.P., E.K. Balon & M.N. Bruton. 1994. The chromosomes of the living coelacanth and their remarkable similarity to those of one of the most ancient frogs. J. Hered. 85: 322–325.

    Google Scholar 

  • Bowen, B.W. & J.C. Avise. 1990. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, methaden, and sturgeon: influence of zoogeographic factors and life-history patterns. Mar. Biol. 107: 371–381.

    Google Scholar 

  • Brandt, J.F. 1869/1870. Einige Worte über die europaischen-asiatischen Störarten (Sturionides). Bull. Acad. Imper. Sci. St.-Petersb. 14: 171–175.

    Google Scholar 

  • Bremer, K. 1988. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Brown, J.R., A.T. Beckenbach & M.J. Smith. 1992a. Influence of Pleistocene glaciations and human intervention upon mitochondrial DNA diversity in white sturgeon (Acipenser transmontanus) populations. Can. J. Fish. Aqua. Sci. 49: 358–367.

    Google Scholar 

  • Brown, J.R., A.T. Beckenbach & M.J. Smith. 1992b. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics 132: 221–228.

    Google Scholar 

  • Brown, J.R., A.T. Beckenbach & M.J. Smith. 1993. Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10: 326–341.

    Google Scholar 

  • Brown, J.R., K. Beckenbach, A.T. Beckenbach & M.J. Smith. 1996. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142: 525–535.

    Google Scholar 

  • Brown, J.R., T.L. Gilbert, D.J. Kowbel, P.J. O'Hara, N.E. Buroker, A.T. Beckenbach & M.J. Smith. 1989. Nucleotide sequence of the apocytochrome B gene in white sturgeon mitochondrial DNA. Nucl. Acids Res. 17: 4389.

    Google Scholar 

  • Buroker, N.E., J.R. Brown, T.A. Gilbert, P.J. O'Hara, A.T. Beckenbach, W.K. Thomas & M.J. Smith. 1990. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124: 157–163.

    Google Scholar 

  • Buth, D.G., T.E. Dowling & J.R. Gold. 1991. Molecular and cytological investigations. pp. 83–126. In: I.J. Winfield & J.S. Nelson (ed.) Cyprinid Fishes, Systematics, Biology and Exploitation, Chapman & Hall, London.

    Google Scholar 

  • Carlson, D.M., M.K. Kettler, S.E. Fisher & G.S. Whitt. 1982. Low genetic variability in paddlefish populations. Copeia 1982: 721–725.

    Google Scholar 

  • Carpenter, J.M. 1988. Choosing among multiple equally parsimonious cladograms. Cladistics 4: 291–296.

    Google Scholar 

  • DeSalle, R., A.K. Williams & M. George. 1993. Isolation and characterization of animal mitochondrial DNA. pp. 176–204. In: E.A. Zimmer, T.J. White, R.L. Cann & A.C. Wilson (ed.) Methods in Enzymology, Vol. 224, Molecular Evolution: Producing the Biochemical Data, Academic Press, San Diego.

    Google Scholar 

  • Dingerkus, G. 1979. Chordate cytogenetic studies: an analysis of their phylogenetic implications with particular reference to fishes and the living coelacanth. Occ. Pap. Calif. Acad. Sci. 134: 111–127.

    Google Scholar 

  • Dingerkus, G. & W.M. Howell. 1976. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 177: 664–669.

    Google Scholar 

  • Donoghue, M.J., R.G. Olmstead, J.F. Smith & J.D. Palmer. 1992. Phylogenetic relationships of Dipsacales based on rbcl sequences. Ann. Missouri Bot. Gard. 79: 333–345.

    Google Scholar 

  • Ernisse, D.E. & A.G. Kluge. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol. Biol. Evol. 10: 1170–1195.

    Google Scholar 

  • Ferguson, M.M., L. Bernatchez, M. Gatt, B.R. Konkle, S. Lee, M.L. Malott & R.S. McKinley. 1993. Distribution of mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the Moose River basin, Ontario, Canada. J. Fish Biol. 43(Suppl. A): 91–101.

    Google Scholar 

  • Ferris, S.D. & G.S. Whitt. 1979. Evolution of the differential regulation of duplicate genes after polyploidization. J. Mol. Evol. 12: 267–317.

    Google Scholar 

  • Findeis, E.K. 1993. Osteology of the North American shovelnose sturgeon Scaphirhynchus platorynchus Rafinesque 1820, with comparisons to other Acipenseridae and Acipenseriformes. Ph.D. Thesis, University of Massachusetts, Amherst. 449 pp.

    Google Scholar 

  • Findeis, E.K. 1997. Osteology and phylogenetic interrelationships of sturgeons (Acipenseridae). Env. Biol. Fish. (this volume).

  • Fitch, W. & T. Smith. 1983. Optimal sequence alignment. Proc. Nat. Acad. Sci. USA 80: 1382–1386.

    Google Scholar 

  • Fontana, F. 1976. Nuclear DNA content and cytometry of erythrocytes of Huso huso L., Acipenser sturio L., and Acipenser naccarii Bonaparte. Caryologia 29: 127–138.

    Google Scholar 

  • Fontana, F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37: 888–892.

    Google Scholar 

  • Fontana, F. & G. Colombo. 1974. The chromosomes of Italian sturgeons. Experientia 30: 739–742.

    Google Scholar 

  • Fontana, F., D. Jankovič & S. Živkovič. 1977. Somatic chromosomes of Acipernser ruthenus L. Arh. biol. Nauka 27: 33–35.

    Google Scholar 

  • Fontana, F., M. Lanfredi, R. Rossi, P. Bronzi & G. Arlati. 1995. Established cell lines from three sturgeon species. Sturgeon Quart. 3(4): 6–7.

    Google Scholar 

  • Gatesy, J., R. DeSalle & W. Wheeler. 1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogenet. Evol. 2: 152–157.

    Google Scholar 

  • Gilbert, T.L., J.R. Brown, P.J. O'Hara, N.E. Buroker, A.T. Beckenbach & M.J. Smith. 1988. Sequence of tRNAThe and tRNAPro from white sturgeon (Acipenser transmontanus) mitochondria. Nucl. Acids Res. 16: 11825.

    Google Scholar 

  • Gold, J.R. 1979. Cytogenetics. pp. 353–405. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Golubtsov, A.S. & E. Yu. Krysanov. 1993. Karyological study of some cyprinid species from Ethiopia. The ploidy differences between large and small Barbus of Africa. J Fish Biol. 42: 445–455.

    Google Scholar 

  • Grande, L. & W.E. Bemis. 1991. Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J. Verteb. Paleontol. 11,supplement 1: 1–121.

    Google Scholar 

  • Grande, L. & W.E. Bemis. 1996. Interrelationships of Acipenseriformes, with comments on “Chondrostei”. pp. 85–115. In: M.L.J. Stiassny, L.R. Parenti & G.D. Johnson (ed.) Interrelationships of Fishes, Academic Press, New York.

    Google Scholar 

  • Guénette, S., R. Fortin & E. Rassart. 1993. Mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the St. Lawrence River and James Bay drainage basins in Quebec, Canada. Can. J. Fish. Aquat. Sci. 50: 659–664.

    Google Scholar 

  • Hart, J.L. 1973. Pacific fishes of Canada. Fish. Res. Board Can. Bull. 180, Ottawa. 740 pp.

    Google Scholar 

  • Hedges, S., C.A. Hass & L.R. Maxson. 1993a. Relations of fish and tetrapods. Nature 363: 501–502.

    Google Scholar 

  • Hedges, S.B., R.A. Nussbaum & L.R. Maxson. 1993b. Caecilian phylogeny and biogeography inferred from mitochondrial DNA sequences of the 12S rRNA and 16S rRNA genes (Amphibia: Gymnophiona). Herpetological Monographs 7: 64–76.

    Google Scholar 

  • Hedrick, R.P., T.S. McDowell, R. Rosemark, D. Aronstein & C.N. Lannan. 1991. Two cell lines from white sturgeon. Trans. Amer. Fish. Soc. 120: 528–534.

    Google Scholar 

  • Hilgendorf, F. 1892. Ŭber eine neue Stör-Art aus Nord-Japan (Acipenser mikadoi). Sitzungsber. Ges. naturf. Freunde, Berlin 7: 98–100.

    Google Scholar 

  • Hillis, D.M., M.W. Allard & M.M. Miyamoto. 1994. Analysis of DNA sequence data: phylogenetic inference. pp. 456–487. In: E.A. Zimmer, T.J. White, R.L. Cann & A.C. Wilson (ed.) Methods in Enzymology, Vol. 224, Molecular Evolution: Producing the Biochemical Data, Academic Press, San Diego.

    Google Scholar 

  • Hillis, D.M., A. Larson, S.K. Davis & E.A. Zimmer. 1990. Nucleic acids III: sequencing. pp. 318–370. In: D.M. Hillis & C. Moritz (ed.) Molecular Systematics, Sinauer Associates, Sunderland.

    Google Scholar 

  • Hinegardner, R. & D.E. Rosen. 1972. Cellular DNA content and the evolution of teleostean fishes. Amer. Nat. 106: 621–644.

    Google Scholar 

  • Holčík, J., R. Kinzelbach, L.I. Sokolov & V.P. Vasil'ev. 1989. Acipenser sturio Linnaeus, 1758. pp. 366–394. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Ida, H., I. Sato & N. Miyawaki. 1985. Karyotypes of two species in the order Torpediniformes. Japan. J. Ichthyol. 32: 107–111.

    Google Scholar 

  • Jin, F. 1995. Late Mesozoic acipenseriforms (Osteichthyes: Actinopterygii) in Central Asia and their biogeographical implications. pp. 15–21. In: A. Sun & Y. Wang (ed.) Sixth Symposium on Mesozoic Terresrial Ecosystems and Biota, Short Papers, China Ocean Press, Beijing.

    Google Scholar 

  • Irwin, D.M., T.D. Kocher & A.C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32: 128–144.

    Google Scholar 

  • Kallersjo, M., J.S. Farris, A.G. Kluge & C. Bult. 1992. Skewness and permutation. Cladistics 8: 275–287.

    Google Scholar 

  • Kedrova, O.S., N.S. Vladytchenskaya & A.S. Antonov. 1980. Single and repeated sequence divergency in fish genomes. Molekulyarnaya Biologiya 14: 1001–1012 (in Russian, English translation Molec. Biol. 14: 787–797).

    Google Scholar 

  • Kessler, K.F. 1877. Fishes of the Aralo-Caspian-Pontine region. Trudy Aralo-Kaspiiskoi ekspeditsii 4: 190–196 (in Russian).

    Google Scholar 

  • Keyvanfar, A. 1988. Étude comparative des protéines sériques et cellulaires de quatre espèces d'esturgeons anadromes de la Mer Caspienne. Ann. Inst. océonagr. (Paris) 64: 25–64.

    Google Scholar 

  • King, M. 1990. Animal cytogenetics, Vol. 4: Chordata 2. Amphibia. Gebruder Borntraeger, Berlin. 241 pp.

    Google Scholar 

  • Kinzelbach, R. 1987. Das ehemalige Vorkommen des Störs, Acipenser sturio (Linnaeus, 1758), im Einzugsgebiet des Rheins (Chondrostei: Acipenseridae). Z. Angew. Zool. 74: 167–200.

    Google Scholar 

  • Kluge, A.G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 7–25.

    Google Scholar 

  • Kocher, T.D., W.K. Thomas. A. Meyer, S.V. Edwards, S. Pääbo, F.X. Villablanca & A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Nat. Acad. Sci. USA 86: 6196–6200.

    Google Scholar 

  • Kohno, S., M. Kuro-o & C. Ikebe. 1991. Cytogenetics and evolution of hynobiid salamanders. pp. 67–88. In: D.M. Green & S.K. Sessions (ed.). Amphibian Cytogenetics and Evolution, Academic Press, San Diego.

    Google Scholar 

  • Konstantinov, K.G., N.I. Nikolyukin & N.A. Timofeeva. 1952. On the biology of sturgeon hybrids. Doklady Akademii Nauk SSSR 86: 417–420 (in Russian).

    Google Scholar 

  • Kozhin, N.I. 1964. Acipenserids of the USSR and their reproduction. Trudy VNIRO 52: 21–59 (in Russian).

    Google Scholar 

  • Kozlov, V.I. 1970. Natural hybrid between ship sturgeon, Acipenser nudiventris derjavini Borzenko, and Kura River stellate sturgeon, A. stellatus Pallas. Voprosy Ikhtiologii 10: 631–636 (in Russian).

    Google Scholar 

  • Krykhtin, M.L. & V.G. Svirskii. 1997. Endemic sturgeons of the Amur River: kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenkii. Env. Biol. Fish. (this volume).

  • Krylova, V.D. 1980. Morphometric characteristics of a hybrid between the beluga, Huso huso, and the sevruga, Acipenser stellatus. Voprosy Ikhtiologii 20: 875–882 (in Russian, English translation J. Ichthyol. 20: 89–97).

    Google Scholar 

  • Kutergina, I.G. & G.D. Ryabova. 1990. Genetic analysis of duplicated loci for lactate dehydrogenase Ldh3 and Ldh4 ingeritance in stellate sturgeon. Genetika 26: 952–955 (in Russian).

    Google Scholar 

  • Kuzmin, Ye. V. 1991. Comparative study of isozymes of muscle malate dehydrogenase of the Ob population of the Siberian sturgeon, Acipenser baeri, and the Don and Kama sterlet, Acipenser ruthenus. Voprosy Ikhtiologii 31: 342–346 (in Russian, English translation J. Ichthyol. 31: 139–144).

    Google Scholar 

  • Larhammar, D. & C. Risinger. 1994. Molecular genetic aspects of tetraploidy in the common carp, Cyprinus carpio. Mol. Phylogenet. Evol. 3: 59–68.

    Google Scholar 

  • Le, H.L.V., G. Lecointre & R. Perasso. 1993. A 28S rRNA based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol. Phylog. Evol. 2: 31–51.

    Google Scholar 

  • Legeza, M.I. 1971. On the hybrids of the Caspian Sea acipenserids. Trudy TSNIORKH 3: 196–206 (in Russian).

    Google Scholar 

  • Li, M.F., V. Marrayatt, C. Annand & P. Odense. 1985. Fish cell culture: two newly developed cell lines from Atlantic sturgeon (Acipenser oxyrhynchus) and guppy (Poecilia reticulata). Can. J. Zool. 63: 2867–2874.

    Google Scholar 

  • Lindberg, G.U. & M.I. Legeza. 1965. Fishes of the Sea of Japan and adjacent areas of the Okhotsk and Yellow seas, Pt. 2. Nauka Press, Moscow. 391 pp. (in Russian).

    Google Scholar 

  • Lukyanenko, V.V. & V.I. Lukyanenko. 1994. Ecological-physiological heterogeneity of sturgeons. Uspekhi Sovremennoi Biologii 114: 428–440 (in Russian).

    Google Scholar 

  • Madsden, C.S., J.E. Brooks, E. de Kloet & S. R. de Kloet. 1994. Sequence conservation of an avian centromeric repeated DNA component. Genome 37: 351–355.

    Google Scholar 

  • Marshin, V.G., V.V. Ponomarenko & G.P. Smirnova. 1969. Inheritance of some behavior characters in interspecies hybridization of acipenserids. pp. 192–208. In: Genetics, Selection, and Hybridization of Fishes, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Martin, A.P., G.J.P. Naylor & S.R. Palumbi. 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.

    Google Scholar 

  • Martin, A.P. & S.R. Palumbi. 1993. Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Mol. Biol. Evol. 10: 873–891.

    Google Scholar 

  • Meyer, A. 1993. Molecular phylogenetic studies of fishes. pp. 3–41. In: A. R. Beamumont (ed.) Evolution and Genetics of Aquatic Organisms, Chapman and Hall, London.

    Google Scholar 

  • Meyer, A., C.H. Biermann & G. Orti. 1993. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proc. R. Soc. Lond. B 252: 231–236.

    Google Scholar 

  • Meyer, A. & A.C. Wilson. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. Mol. Evol. 31: 359–364.

    Google Scholar 

  • Meyer, A., T.D. Kocher, P. Basasibwaki & A. Wilson. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550–553.

    Google Scholar 

  • Miracle, A.L. & D.E. Campton. 1995. Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, Acipenser oxyrhynchus desotoi. J. Hered. 86: 22–27.

    Google Scholar 

  • Mirsky, A.E. & H. Ris. 1951. The DNA content of animal cells and its evolutionary significance. J. Gen. Physiol. 34: 451–462.

    Google Scholar 

  • Miyamoto, M.M. 1985. Consensus cladograms and general classification. Cladistics 1: 186–189.

    Google Scholar 

  • Morescalchi, A. 1973. Amphibia. pp. 233–348. In: A.B. Chiarelli & E. Capanna (ed.) Cytotaxonomy and Vertebrate Evolution, Academic Press, London.

    Google Scholar 

  • Morescalchi, A., G. Odierna & E. Olmo. 1979. Karyology of the primitive salamanders, family Hynobiidae. Experientia 35: 1434–1435.

    Google Scholar 

  • Nelson, J.S. 1994. Fishes of the World, 3rd edition. John Wiley & Sons, Toronto. 600 pp.

    Google Scholar 

  • Nesov, L.A. & M.N. Kaznyshkin. 1983. New sturgeons from the Cretacious and Paleogene of the USSR. pp. 68–76. In: V.V. Menner (ed.) Contemporary Problems of Paleoichthyology, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Nguyen, T.M., T.P. Mommsen, S.M. Mims & J.M. Conlon. 1994. Characterization of insulins and proglucagon-derived peptides from a phylogenetically ancient fish, the padlefish (Polyodon spathula). Biochem. J. 300: 339–345.

    Google Scholar 

  • Nikolyukin, N.I. 1970. Hybridization within the family Acipenseridae and perspectives of its use in sturgeon breeding. Trudy VNIRO 76: 56–69 (in Russian).

    Google Scholar 

  • Nikonorov, S.I., G.D. Ryabova, I.G. Kutergina & M.V. Ofitserov. 1985. Electrophoretic analysis of genetic variability of the starred sturgeon Acipenser stellatus. Doklady Akademii Nauk SSSR. Seriya Biologiya 284: 209–211 (in Russian; English translation Doklady Biological Sciences 284: 570–572).

    Google Scholar 

  • Normark, B.B., A.R. McCune & R.G. Harrison. 1991. Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol. Biol. Evol. 8: 819–834.

    Google Scholar 

  • Ohno, S. 1970. Evolution by gene duplication. Springer-Verlag, Heidelberg. 160 pp.

    Google Scholar 

  • Ohno, S., J. Muramoto, C. Stenius, L. Christian, W.A. Kittrel & N.B. Atkin. 1969. Microchromosomes in holocephalian, chondrostean, and holostean fishes. Chromosoma 26: 35–40.

    Google Scholar 

  • Ojima Y. & T. Yamano. 1980. A chromosome study of the holostean long nose gar Lepisosteus osseus. Chrom. Inform. Serv. 28: 7–8.

    Google Scholar 

  • Olmo, E., V. Stingo, O. Cobror, T. Capriglione & G. Odierna. 1982. Repetitive DNA and polyploidy in selachians. Comp. Biochem. Physiol. 73B: 739–745.

    Google Scholar 

  • Ong, T.-L., J. Stabile, I. Wirgin & J.R. Waldman. 1996. Genetic divergence between Acipenser oxyrinchus oxyrinchus and A. o. desotoi as assessed by mitochondrial DNA sequencing analysis. Copeia 1996: 464–469.

    Google Scholar 

  • Ovsyannikov, F.V. 1870. On the artificial breeding of the sterlet. pp. 191–200. In: Trudy II Syezda Russkikh Estesvoispytatelei, Pt. 2, Moscow (in Russian).

  • Palumbi, S.R., A.P. Martin, W.O. McMillan, S.R. Romano, G. Grabowsky & L. Stice. 1991. The simple fools guide to PCR, version 2. Department of Zoology, University of Hawaii, Honolulu. 15 pp.

    Google Scholar 

  • Patarnello, T., L. Bargelloni, F. Caldara & L. Colombo. 1994. Cytochrome b and 16S rRNA sequence variation in the Salmo trutta (Salmonidae, Teleostei) species complex. Molec. Phylogenet. Evol. 3: 69–74.

    Google Scholar 

  • Patterson, C. 1973. Interrelationships of holosteans. pp. 233–305. In: P.H. Greenwood, R.S. Miles & C. Patterson (ed.) Interrelationships of Fishes, Academic Press, London.

    Google Scholar 

  • Patterson, C. 1982. Morphology and interrelationships of primitive actinopterygian fishes. Amer. Zool. 22: 241–259.

    Google Scholar 

  • Patterson, C., D.M. Williams & C.J. Humphries. 1993. Congruence between molecular and morphological phylogenies. Annu. Rev. Ecol. Syst. 24: 153–188.

    Google Scholar 

  • Phelps, S.R. & F. Allendorf. 1983. Genetic identity of pallid and shovelnose sturgeon (Scaphirhynchus albus and S. platorynchus). Copeia 1983: 696–700.

    Google Scholar 

  • Pirogovskii, M.I., L.I. Sokolov & V.P. Vasil'ev. 1989. Huso huso (Linnaeus, 1758). pp. 156–200. In:: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Rab, P. 1986. A note on the karyotype of the sterlet, Acipenser ruthenus (Pisces, Acipenseridae). Folia Zool. 35: 73–78.

    Google Scholar 

  • Risinger, C. & D. Larhammar. 1993. Multiple loci for synapse protein SNAP-25 in the tetraploid goldfish. Proc. Nat. Acad. Sci. USA 90: 10598–10602.

    Google Scholar 

  • Rochard, E., P. Williot, G. Castelnaud & M. Lepage. 1991. Éléments de systèmatique et de biologie des populations sauvages d'esturgeons. pp. 475–507. In: P. Williot (ed.) Acipenser, CEMAGREF Publ., Bordeaux.

    Google Scholar 

  • Rossi, R., G. Grandi, R. Trisolini, P. Franzoni, A. Carrieri, B.S. Dezfuli & E. Vecchietti. 1991. Osservazioni sulla biologia e la pesca della storione cobice Acipenser naccarii Bonaparte nella parte terminale del fiume Po. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stir. Natur. Milano 132: 121–142.

    Google Scholar 

  • Ruban, G.I. 1997. Species structure, contemporary distribution and status of the Siberian sturgeon, Acipenser baerii. Env. Biol. Fish. (this volume).

  • Ryabova, G.D. & I.G. Kutergina. 1990. Analysis of allozyme variability in the stellate sturgeon, Acipenser stellatus (Pallas), from the northern Caspian Sea. Genetika 26: 902–911 (in Russian).

    Google Scholar 

  • Schwartz, F.J. & M.B. Maddock. 1986. Comparison of karyotypes and cellular DNA contents within and between major lines of elasmobranchs. pp. 148–157. In: T. Uyeno, R. Arai, T. Tanuichi & K. Matsuda (ed.) Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes, Ichthyol. Soc. Japan, Tokyo.

  • Scott, W.B. & E.J. Grossman. 1973. Freshwater fishes of Canada. Fish Res. Board Can. Bull. 184, Ottawa. 966 pp.

  • Serebryakova, E.V. 1969. Some data on chromosome complements of the acipenserids. pp. 105–113. In: Genetics, Selection, and Hybridization of Fishes, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Serebryakova, E.V. 1970. Chromosome complements of hybrids between acipenserids with different karyotypes. pp. 413–419. In: Distant Hybridization of Plants and Animals, Vol. 2, Kolos, Moscow (in Russian).

    Google Scholar 

  • Serebryakova, E.V., V.A. Arefiev, V.P. Vasiliev & L.I. Sokolov. 1983. The study of the karyotype of giant sturgeon, Huso huso (L.) (Acipenseridae, Chondrostei) with reference to their systematic position. pp. 63–69. In: Genetics of Commercial Fishes and Objects of Aquaculture, Legkaya i Pishchevaya Promyshlennost, Moscow (in Russian).

    Google Scholar 

  • Shedlock, A.M., J.D. Parker, D.A. Crispin, T.W. Pietsch & G.C. Burmer. 1992. Evolution of the salmonid mitochondrial control region. Mol. Phylogenet. Evol. 1: 179–192.

    Google Scholar 

  • Shmidt, P.Yu. 1950. Fishes of the Sea of Okhotsk. Izdatelstvo Akademii Nauk, Moscow. 370 pp. (in Russian).

    Google Scholar 

  • Shubina, T.N., A.A. Popova & V.P. Vasilev. 1989. Acipenser stellatus Pallas, 1771. pp. 395–443. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Slynko, V.I. 1976. Multiple molecular forms of malate dehydrogenase and lactate dehydrogenase in Russian sturgeon (Acipenser gueldenstaedti Br.) and beluga (Huso huso L.). Doklady Akademii Nauk SSSR, Seriya Biologiya 228: 470–472 (in Russian; English translation Doklady Biological Sciences 228: 201–204).

    Google Scholar 

  • Sokolov, L.I. & V.P. Vasilev. 1989a. Acipenser nudiventris Lovetsky, 1828. pp. 206–226. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Sokolov, L.I. & V.P. Vasilev. 1989b. Acipenser ruthenus Linnaeus, 1758. pp. 227–262. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Sokolov, L.I. & V.P. Vasilev. 1989c. Acipenser baeri Brandt, 1869. pp. 263–284. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Stanley, H.P., H.E. Kasinsky & N.C. Bols. 1984. Meiotic chromatin diminution in a vertebrate, the holocephalian fish Hydrolagus colliei (Chondrichthyes, Holocephali). Tissue and Cell 16: 203–215.

    Google Scholar 

  • Stingo, V. & L. Rocco. 1991. Chondrichthyan cytogenetics: a comparison with teleostean. J. Mol. Evol. 33: 76–82.

    Google Scholar 

  • Stock, D.W., J.K. Gibbons & G.S. Whitt. 1991a. Strength and limitations of molecular sequence comparisons for inferring the phylogeny of the major groups of fishes. J. Fish Biol. 39(Suppl. A): 225–236.

    Google Scholar 

  • Stock, D.W., K.D. Moberg, L.R. Maxson & G.S. Whitt. 1991b. A phylogenetic analysis of the 18S ribosomal RNA sequence of the coelacanth Latimeria chalumnae. Env. Biol. Fish. 32: 99–117.

    Google Scholar 

  • Stock, D.W. & G.S. Whitt. 1992. Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257: 787–789.

    Google Scholar 

  • Suzuki, A. & J. Hirata. 1991. Chromosomes and DNA content of Amia calva. Chromos. Inform. Serv. 50: 34–37.

    Google Scholar 

  • Suzuki, A., K. Yamanaka, T. Urushido & N. Kondo. 1988. A banding chromosome study of African fish family Polypteridae (Pisces: Polypteriformes). Proc. Japan. Acad. 64B: 299–302.

    Google Scholar 

  • Suzuki, A., K. Yamanaka, T. Urushido & N. Kondo. 1989. N-banding chromosomes of two polypterids, Polypterus senegalus and Calamoichthys calabaricus (Polypteriformes, Pisces). Chromos. Inform. Serv. 46: 23–25.

    Google Scholar 

  • Swofford, D.L. 1993. PAUP: Phylogenetc Analysis Using Parsimony: Version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign. 154 pp.

  • Tiersch, T.R., R.W. Chandler, S.S. Wachtel & S. Elias. 1989. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10: 706–710.

    Google Scholar 

  • Tortonese, E. 1989. Acipenser naccarii Bonaparte, 1836. pp. 284–293. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Tsoi, S.C.M., S.-C. Lee & W.-C. Chao. 1989. Duplicate gene expression and diploidization in an Asian tetraploid catostomid, Myxocyprinus asiaticus (Cypriniformes, Catostomidae). Comp. Biochem. Physiol. 93B: 27–32.

    Google Scholar 

  • Ueno, K., A. Nagase & Y.-J. Ye. 1988. Tetraploid origin of the karyotype of the Asian sucker, Myxocyprinus asiaticus. Japan. J. Ichthyol. 34: 512–514.

    Google Scholar 

  • Uyeno, T. & G.R. Smith. 1972. Tetraploid origin of the karyotype of catostomid fishes. Science 175: 644–646.

    Google Scholar 

  • Vasiliev, V.P. 1985. Evolutionary karyology of fishes. Nauka Press, Moscow. 298 pp. (in Russian).

    Google Scholar 

  • Vasiliev, V.P., L.L. Sokolov & E.V. Serebryakova. 1980. Karyotypes of the Siberian sturgeon, Acipenser baeri, of the Lena River and some aspects of karyotype evolution in Acipenseriformes. Voprosy Ikhtiologii 20: 814–822 (in Russian; English translation J. Ichthiol. 20: 37–45).

    Google Scholar 

  • Vervoort, A. 1980a. Karyotypes of Polypteridae (Osteichthyes). Experientia 36: 646–647.

    Google Scholar 

  • Vervoort, A. 1980b. Karyotypes and nuclear DNA contents of Polypteridae (Osteichthyes). Experientia 36: 646–647.

    Google Scholar 

  • Vladykov, V.D. 1955. A comparison of Atlantic sea sturgeon with a new subspecies from the Gulf of Mexico (Acipenser oxyrhynchus desotoi). J. Fish. Res. Board Can. 12: 754–761.

    Google Scholar 

  • Vladykov, V.D. & J.R. Greeley. 1963. Order Acipenseroidei. pp. 24–60. In: H.B. Bigelow, C.M. Breder, D.M. Cohen, G.W. Mead, D. Merriman, Y.H. Olsen, W.C. Schroeder, L.P. Schultz & J. Tee-Van (ed.) Fishes of the Western North Atlantic, Mem. Sears Found. Mar. Res. 1.

  • Vlasenko, A.D., A.V. Pavlov, L.I. Sokolov & V.P. Vasilev. 1989a. Acipenser gueldenstaedti Brandt, 1833. pp. 294–344. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Vlasenko, A.D., A.V. Pavlov & V.P. Vasilev. 1989b. Acipenser persicus Borodin, 1897. pp. 345–366. In: J. Holčík (ed.) The Freshwater Fishes of Europe, Vol. 1, Pt. II, General Introduction to Fishes, Acipenseriformes, AULA-Verlag, Wiesbaden.

    Google Scholar 

  • Wagner, R.P., M.P. Maguire & R.L. Stallings. 1993. Chromosomes. A Synthesis. Wiley-Liss, New York. 523 pp.

    Google Scholar 

  • Ward, R.D., D.O. Skibinski & M. Woodwark. 1992. Protein heterozygosity, protein structure, and taxonomic differentiation. Evol. Biol. 26: 23–159.

    Google Scholar 

  • Ward, R.D., M. Woodwark & D.O.F. Skibinski. 1994. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J. Fish Biol. 44: 213–232.

    Google Scholar 

  • Waterman M.S., M. Eggert & E. Lander. 1992. Parametric sequence comparisons. Proc. Nat. Acad. Sci. USA 89: 6090–6093.

    Google Scholar 

  • Watrous, L. & Q. Wheeler. 1981. The out-group comparison method of character analysis. Syst. Zool. 30: 1–11.

    Google Scholar 

  • Wei, Q., F. Ke, J. Zhang, P. Zhuang, J. Luo, R. Zhou & W. Yang. 1997. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Env. Biol. Fish. (this volume).

  • Wheeler, W.C. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44: 321–331.

    Google Scholar 

  • Wheeler, W.C., P. Cartwright & C.Y. Hayashi. 1993. Arthropod phylogeny: a combined approach. Cladistics 9: 1–39.

    Google Scholar 

  • Wheeler, W.C., J. Gatesy & R. DeSalle. 1995. Elision: a method for accomodating multiple molecular sequence alignments with alignment-ambiguous sites. Molec. Phylogenet. Evol. 4: 1–9.

    Google Scholar 

  • Wheeler, W.C. & D.L. Gladstein. 1993. MALIGN, Version 1.85. Program and documentation. AMNH, New York. 27 pp.

    Google Scholar 

  • Williot, P., P. Bronzi & G. Arlati. 1993. A very brief survey of status and prospects of freshwater sturgeon farming in Europe (EEC). pp. 32–36. In: P. Kestmont & R. Billard (ed.) Workshop on Aquaculture of Freshwater Species (except Salmonids), Spec. Publ. No. 20, Europ. Aquacult. Soc., Ghent.

    Google Scholar 

  • Wirgin, I.I., J.E. Stabile & J.R. Waldman. 1997. Molecular analysis in the conservation of sturgeons and paddlefish. Env. Biol. Fish. (this volume).

  • Yakovlev, V.N. 1977. Phylogenesis of acipenseriforms. pp. 116–146. In: V.V. Menner (ed.) Essays on Phylogeny and Systematics of Fossil Fishes and Agnathans, Akademiya Nauk SSSR, Moscow (in Russian).

    Google Scholar 

  • Yakovlev, V.N. 1986. Fishes. pp. 178–179. In: L.P. Tatarinov (ed.) Insects in the Early Cretaceous Ecosystems of the West Mongolia, The Soviet-Mongolian Palaeontological Expedition Transactions, Vol. 28, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Yasuda, A., K. Yamaguchi, T. Noso, H. Papkoff, A.L. Polenov, C.S. Nicoll & H. Kawaguchi. 1992. The complete sequence of growth hormone from sturgeon (Acipenser guldenstaedti). Biochim. Biophys. Acta 1120: 297–304.

    Google Scholar 

  • Yu, X., T. Zhou, K. Li, Y. Li. & M. Zhou. 1987. On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China. Genetica 72: 225–236.

    Google Scholar 

  • Yu, X.-Y. & X.-J. Yu. 1990. A schizothoracine fish species, Diptychus dipogon, with a very high number of chromosomes. Chrom. Inform. Serv. 48: 17–18.

    Google Scholar 

  • Zograf, N.Yu. 1887. Materials to understanding of the organization of the sterlet. Izvestiya Obschestva Lyubitelei Estestoznaniya, Antropologii i Etnographii 52(3). 72 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birstein, V.J., Hanner, R. & DeSalle, R. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environmental Biology of Fishes 48, 127–155 (1997). https://doi.org/10.1023/A:1007366100353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007366100353

Navigation