Skip to main content
Log in

Combinatorial PCR approach to homology-based cloning: Cloning and expression of mouse and human GM3-synthase

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

GM3-synthase, also known as sialyltransferase I (ST-I), catalyzes the transfer of a sialic acid residue from CMP-sialic acid onto lactosylceramide to form ganglioside GM3. In order to clone this enzyme, as well as other sialyltransferases, we developed an approach that we termed combinatorial PCR. In this approach, degenerate primers were designed on the basis of conserved sequence motifs of the ST3 family of sialyltransferases (STs). The nucleotide sequence of the primers was varied to cover all amino acid variations occurring in each motif. In addition, in some primers the sequence was varied to cover possible homologous substitutions that are absent in the available motifs. A panel of cDNA from 12 mouse and 8 human tissues was used to enable cloning of tissue- and stage-specific sialyltransferases. Using this approach, the fragments of 11 new putative sialyltransferases were isolated and sequenced so far. Analysis of the expression pattern of a particular sialyltransferase across the panel of cDNA from the different tissues provided information about the tissue specificity of ST expression. We chose two new ubiquitously expressed human and mouse STs to clone full-length copies and to assay for GM3-synthase activity. One of the STs, which exhibited the highest homology to ST3 Gal III, showed activity toward lactosylceramide (LacCer) and was termed ST3 Gal V according to the suggested nomenclature [1]. The other ubiquitously expressed sialyltransferase was termed ST3Gal VI. All isolated sialyltransferases were screened for alternatively spliced forms (ASF). Such forms were found for both human ST3Gal V and ST3Gal VI in human fetal brain cDNA library. The detailed cloning strategy, functional assay, and full length cDNA and protein sequences of GM3 synthase (ST3Gal V, or ST-I) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuji S, Datta AK, Paulson JC (1996) [letter]. Glycobiology 6: v–vii.

    Google Scholar 

  2. Bremer EG, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) J Biol Chem 259: 6818–25.

    Google Scholar 

  3. Bremer EG, Schlessinger J, Hakomori S (1986) J Biol Chem 261: 2434–40.

    Google Scholar 

  4. Nojiri H, Takaku F, Ohta M, Miura Y, Saito M (1985) Cancer Res 45: 6100–106.

    Google Scholar 

  5. Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Proc Natl Acad Sci USA 83: 782–86.

    Google Scholar 

  6. Nojiri H, Kitagawa S, Nakamura M, Kirito K, Enomoto Y, Saito M. (1988) J Biol Chem 263: 7443–46.

    Google Scholar 

  7. Yada Y, Okano Y, Nozawa Y (1991) Biochem J 279: 665–70.

    Google Scholar 

  8. Rahmann H, Rosner H, Kortje KH, Beitinger H, Seybold V (1994) Brain Res 101: 127–45.

    Google Scholar 

  9. Ferrari G, Greene LA (1998) Ann NY Acad Sci 845: 263–73.

    Google Scholar 

  10. Hakomori S (1990) J Biol Chem 265: 18713–16.

    Google Scholar 

  11. Hakomori S (1997) Sphingolipid-mediated Signal Transduction. R.G.Landes Company and Chapman & Hall.

  12. Hakomori S, Igarashi Y (1995) J Biochem (Tokyo) 118: 1091–103.

    Google Scholar 

  13. Hynds DL, Burry RW, Yates AJ (1997) Neurosci Res 47: 617–25.

    Google Scholar 

  14. Katoh N (1995) Toxicology 104: 73–81.

    Google Scholar 

  15. Yates AJ, Rampersaud A (1998) Ann NY Acad Sci 845: 57–71.

    Google Scholar 

  16. Suarez Pestana E, Greiser U, Sanchez B, Fernandez LE, Lage A, Perez R, Bohmer FD (1997) Br J Cancer 75: 213–20.

    Google Scholar 

  17. Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ (1985) J Neurochem 44: 1229–34.

    Google Scholar 

  18. Kreutter D, Kim JY, Goldenring JR, Rasmussen H, Ukomadu C, DeLorenzo RJ, Yu R K (1987) J Biol Chem 262: 1633–37.

    Google Scholar 

  19. Kim JY, Goldenring JR, DeLorenzo RJ, Yu RK (1986) J Neurosci Res 15: 159–66.

    Google Scholar 

  20. Matecki A, Stopa M, Was A, Pawelczyk T (1997) Int J Biochem Cell Biol 29: 815–28.

    Google Scholar 

  21. Yang FY, Wang LH, Yang XY, Tsui ZC, Tu YP (1997) Biophys Chem 68: 137–46.

    Google Scholar 

  22. Misasi R, Sorice M, Garofalo T, Griggi T, Campana W, Giammatteo M, Pavan A, Hiraiwa M, Pontieri M, O'Brien J (1998) J Neurochem 71: 2313–21.

    Google Scholar 

  23. Hakomori S, Yamamura S, Handa AK (1998) Ann NY Acad Sci 845: 1–10.

    Google Scholar 

  24. Kojima N, Hakomori S (1991) J Biol Chem 266: 17552–58.

    Google Scholar 

  25. Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S (1992) J Biol Chem 267: 17264–70.

    Google Scholar 

  26. Hammache D, Yahi N, Pieroni G, Ariasi F, Tamalet C, Fantini J (1998) Biochem Biophys Res Commun 246: 117–22.

    Google Scholar 

  27. Hammache D, Pieroni G, Yahi N, Delezay O, Koch N, Lafont H, Tamalet C, Fantini J (1998) J Biol Chem 273: 7967–71.

    Google Scholar 

  28. Paulson JC, Beranek WE, Hill RL (1977) J Biol Chem 252: 2356–62.

    Google Scholar 

  29. Gillespie W, Kelm S, Paulson JC (1992) J Biol Chem 267: 21004–10.

    Google Scholar 

  30. Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H (1994) Proc Natl Acad Sci USA 91: 10455–59.

    Google Scholar 

  31. Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, Hanai N, Nishi T, Hasegawa M (1993) J Biol Chem 268: 22782–87.

    Google Scholar 

  32. Kim YJ, Kim KS, Do S, Kim CH, Kim SK, Lee YC (1997) Biochem Biophys Res Commun 235: 327–30.

    Google Scholar 

  33. Nakayama J, Fukuda MN, Hirabayashi Y, Kanamori A, Sasaki K, Nishi T, Fukuda M (1996) J Biol Chem 271: 3684–91.

    Google Scholar 

  34. Lee YC, Kurosawa N, Hamamoto T, Nakaoka T, Tsuji S (1993) Eur J Biochem 216: 377–85.

    Google Scholar 

  35. Kapitonov D, Yu RK (1997) [dissertation] Medical College of Virginia of Virginia Commonwealth University, Richmond

  36. Gu X, Preuss U, Gu T, Yu RK (1995) J Neurochem 64: 2295–302.

    Google Scholar 

  37. Sipos L, von Heijne G (1993) Eur J Biochem 213: 1333–40.

    Google Scholar 

  38. Nakashima H, Nishikawa K (1992) FEBS Lett 303: 141–46.

    Google Scholar 

  39. Hartmann E, Rapoport TA, Lodish HF (1989) Proc Natl Acad Sci USA 86: 5786–90.

    Google Scholar 

  40. Nigam SK, Blobel G (1989) J Biol Chem 264: 16927–32.

    Google Scholar 

  41. Ou WJ, Thomas DY, Bell AW, Bergeron JJ. (1992) J Biol Chem 267: 23789–96.

    Google Scholar 

  42. Sfeir C, Veis A (1995) J Bone Miner Res 10: 607–15.

    Google Scholar 

  43. Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, Nakamura M, Inokuchi J, Sanai Y, Saito M (1998) J Biol Chem 273: 31652–55

    Google Scholar 

  44. Kono M, Takashima S, Liu H, Inoue M, Kojima N, Lee YC, Hamamoto T, Tsuji S (1998) Biochem Biophys Res Commun 253: 170–75.

    Google Scholar 

  45. Kapitonov D, Yu RK (1999) Glycobiology (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapitonov, D., Bieberich, E. & Yu, R.K. Combinatorial PCR approach to homology-based cloning: Cloning and expression of mouse and human GM3-synthase. Glycoconj J 16, 337–350 (1999). https://doi.org/10.1023/A:1007091926413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007091926413

Navigation