Skip to main content
Log in

Clustering of neuronal sodium channels requires contact with myelinating Schwann cells

  • Published:
Journal of Neurocytology

Abstract

Efficient and rapid conduction of action potentials by saltatory conduction requires the clustering of voltage-gated sodium channels at nodes of Ranvier. This clustering results from interactions between neurons and myelinating glia, although it has not been established whether this glial signal is contact-dependent or soluble. To investigate the nature of this signal, we examined sodium channel clustering in co-cultures of embryonic rat dorsal root ganglion neurons and Schwann cells. Cultures maintained under conditions promoting or preventing myelination were immunostained with antibodies against the α subunit of the sodium channel and against ankyrinG, a cytoskeletal protein associated with these channels. Consistent with previous in vivo studies (Vabnick et al., 1996), sodium channels and ankyrin G cluster at the onset of myelination. These clusters form adjacent to the ends of the myelinating Schwann cells and appear to fuse to form mature nodes. In contrast, sodium channels and ankyrin G do not cluster in neurons grown alone or in co-cultures where myelination is precluded by growing cells in defined media. Conditioned media from myelinating co-cultures also failed to induce sodium channel or ankyrin G clusters in cultures of neurons alone. Finally, no clusters develop in the amyelinated portions of suspended fascicles of dorsal root ganglia explants despite being in close proximity to myelinated segments in other areas of the dish. These results indicate that clustering of sodium channels requires contact with myelinating Schwann cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, V., Lambert, S., Davis, J. Q.. & Zhang, X. (1997) Molecular architecture of the specialized axonal membrane at the node of Ranvier. Soc. Gen. Physiol. Ser. 52, 107–120.

    Google Scholar 

  • Black, J. A., Kocsis, J. D. & Waxman, S. G.(1990) Ion channel organization of the myelinated fiber. Trends Neurosci. 13, 48–54.

    Google Scholar 

  • Brunden, K.R. & Brown, D. T. (1990) P0 mRNA expression in cultures of Schwann cells and neurons that lack basal lamina and myelin. J. Neurosci. Res. 27, 159–168.

    Google Scholar 

  • Bunge, M. B., Wood, P. M. Tynan, L. B., Bates, M. L. & Sanes, J. R. (1989) Perineurium originates fromfibroblasts: demonstration in vitrowith a retroviral marker. Science 243, 229–231.

    Google Scholar 

  • Bunge, R. P. & Bunge, M. B. (1978) Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers. J. Cell. Biol. 78, 943–950.

    Google Scholar 

  • Bunge, R. P., Bunge, M. B. & Eldridge, C. F. (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu. Rev. Neurosci. 9, 305–328.

    Google Scholar 

  • Chiu, S. Y. & Schwarz, W. (1987) Sodium and potassium currents in acutely demyelinated internodes of rabbit sciatic nerves. J. Physiol. (Lond) 391, 631–649.

    Google Scholar 

  • Davis, J. Q., Lambert, S. & Bennett, V. (1996) Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. J. Cell. Biol. 135, 1355–1367.

    Google Scholar 

  • Deerinck, T. J., Levinson, S. R., Bennett, G. V. & Ellisman, M. H. (1997) Clustering of voltage sensitive sodium channels on axons is independent of direct Schwann cell contact in the dystrophic mouse. J. Neurosci. 17, 5080–5088.

    Google Scholar 

  • Dugandzija-novakovic, S., Koszowski, A. G., Levinson, S. R. & Shrager, P. (1995) Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J. Neurosci. 15, 492–503.

    Google Scholar 

  • Einheber, S., Milner, T., Giancotti, F. & Salzer, J. (1993) Axonal regulation of Schwann cell integrin expression suggests a role for alpha6 beta4 in myelination. J. Cell. Biol. 123, 1223–1236.

    Google Scholar 

  • Einheber, S., Zanazzi, G., Ching, W., Scherer, S., Milner, T. A., Peles, E. & Salzer, J. L. (1997) The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J. Cell. Biol. 139, 1495–1506.

    Google Scholar 

  • Fernandez-vallÉ, C., Fregien, N., Wood, P. M., & Bunge, M. B. (1993) Expression of the protein zero myelin gene in axon-related Schwann cells is linked to basal lamina formation. Development 119, 867–880.

    Google Scholar 

  • Garver, T. D., Ren, Q., Tuvia, S. & Bennett, V. (1997) Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell. Biol. 137, 703–714.

    Google Scholar 

  • Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. (1993) Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40, 319–384.

    Google Scholar 

  • Kaplan, M. R., Meyer-franke, A., Lambert, S., Bennett, V., Duncan, I. D., Levinson, S. R. & Barres, B. A. (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728.

    Google Scholar 

  • Kordeli, E., Lambert, S. & Bennett, V. (1995) AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270, 2352–2359.

    Google Scholar 

  • Koszowski, A. G., Owens, G. C. & Levinson, S. R. (1998) The effect of the mouse mutation claw paw on myelination and nodal frequency in sciatic nerves. J. Neurosci. 18, 5859–5868.

    Google Scholar 

  • Lambert, S., Davis, J. Q. & Bennett, V. (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J. Neurosci. 17, 7025–7036.

    Google Scholar 

  • Moya, F., Bunge, M. B. & Bunge, R. P. (1980) Schwann cells proliferate but fail to differentiate in defined medium. Proc. Natl. Acad. Sci. USA 77, 6902–6906.

    Google Scholar 

  • Owens, G. C. & Bunge, R. P. (1989) Evidence for an early role for myelin-associated glycoprotein in the process of myelination. Glia 2, 119–128.

    Google Scholar 

  • Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J. Neurocytol. 5, 731–745.

    Google Scholar 

  • Salzer, J. L. (1997) Clustering sodium channels at the node of Ranvier: Close encounters of the axonglia kind. Neuron 18, 843–846.

    Google Scholar 

  • Shrager, P. (1988) Ionic channels and signal conduction in single remyelinating frog nerve fibres. J. Physiol. (Lond) 404, 695–712.

    Google Scholar 

  • Sunada, Y., Bernier, S. P., Kozak, C. A., Yamada, Y. & Campbell, K. P. (1994) Deficiency of merosin in dystrophic dymice and genetic linkage of laminin M chain gene to dylocus. J. Biol. Chem. 269, 13729–13732.

    Google Scholar 

  • Tuvia, S., Garver, T. D. & Bennett, V. (1997) The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation. Proc. Natl. Acad. Sci. USA 94, 12957–12962.

    Google Scholar 

  • Vabnick, I., Novakovic, S. D., Levinson, S. R., Schachner, M. & Shrager, P. (1996). The clustering of axonal sodium channels during development of the peripheral nervous system. J. Neurosci. 16, 4914–4922.

    Google Scholar 

  • Vabnick, I. & Shrager, P. (1998) Ion channel redistribution and function during development of the myelinated axon. J. Neurobiol. 37, 80–96.

    Google Scholar 

  • Wood, P. (1976) Separation of functional Schwann cells and neurons from peripheral nerve tissue. Brain. Res. 115, 361–375.

    Google Scholar 

  • Xu, H., Christmas, P., Wu, X.-R., Wewer, U. M. & Engvall, E. (1994) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc. Natl. Acad. Sci. USA 91, 5572–5576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ching, W., Zanazzi, G., Levinson, S.R. et al. Clustering of neuronal sodium channels requires contact with myelinating Schwann cells. J Neurocytol 28, 295–301 (1999). https://doi.org/10.1023/A:1007053411667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007053411667

Keywords

Navigation