Skip to main content
Log in

Role of Disulfides and Sulfhydryl Groups in Agonist and Antagonist Binding in Serotonin1A Receptors from Bovine Hippocampus

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

SUMMARY

1. The serotonin1A (5-HT1A) receptors are members of a superfamily of seven-transmembrane-domain receptors that couple to G-proteins. They appear to be involved in various behavioral and cognitive functions. Mutagenesis and modeling studies point out that the ligand-binding sites in serotonin receptors are located in the transmembrane domain. However, these binding sites are not very well characterized. Since disulfide bonds and sulfhydryl groups have been shown to play vital roles in the assembly, organization, and function of various G-protein-coupled receptors, we report here the effect of disulfide and sulfhydryl group modifications on the agonist and antagonist binding activity of 5-HT1A receptors from bovine hippocampus.

2. DTT or NEM treatment caused a concentration-dependent reduction in specific binding of the agonist and antagonist in 5-HT1A receptors from bovine hippocampal native and solubilized membranes. This is supported by a concomitant reduction in binding affinity.

3. Pretreatment of the receptor with unlabeled ligands prior to chemical modifications indicate that the majority of disulfides or sulfhydryl groups that undergo modification giving rise to inhibition in binding activity could be at the vicinity of the ligand-binding sites.

4. In addition, ligand-binding studies in presence of GTP-γ-S, a nonhydrolyzable analogue of GTP, indicate that sulfhydryl groups (and disulfide bonds to a lesser extent) are vital for efficient coupling between the 5-HT1A receptor and the G-protein.

5. Our results point out that disulfide bonds and sulfhydryl groups could play an important role in ligand binding in 5-HT1A receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albert, P. R., Zhou, Q.-Y., Van Tol, H. H. M., Bunzow, J. R., and Civelli, O. (1990). Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J. Biol. Chem. 265:5825-5832.

    Google Scholar 

  • Artigas, F., Romero, L., De Montigny, C., and Blier, P. (1996). Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 19:378-383.

    Google Scholar 

  • Banerjee, P., Berry-Kravis, E., Bonafede-Chhabra, D., and Dawson, G. (1993). Heterologous expression of the serotonin 5-HT1A receptor in neural and nonneural cell lines. Biochem. Biophys. Res. Commun. 192:104-110.

    Google Scholar 

  • Blier, P., De Montigny, C., and Chaput, Y. (1990). A role for the serotonin system in the mechanism of action of antidepressant treatments: Preclinical evidence. J. Clin. Psychiatry 51:14-20.

    Google Scholar 

  • Boess, F. G., and Martin, I. L. (1994). Molecular biology of 5-HT receptors. Neuropharmacology 33:275-317.

    Google Scholar 

  • Brandt, W., Golbraikh, A., Tager, M., and Lendeckel, U. (1999). A molecular mechanism for the cleavage of a disulfide bond as the primary function of agonist binding to G-protein-coupled receptors based on theoretical calculations supported by experiments. Eur. J. Biochem. 261:89-97.

    Google Scholar 

  • Bremner, D. H., Ringan, N. S., and Wishart, G. (1997). Modeling of the agonist binding site of serotonin human 5-HT1A, 5-HT1Dα and 5-HT1Dβ receptors. Eur. J. Med. Chem. 32:59-69.

    Google Scholar 

  • Bruns, R. F., Lawson-Wendling, K., and Pugsley, T. A. (1983). A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal. Biochem. 132:74-81.

    Google Scholar 

  • Casadio, A., Martin, K. C., Giustetto, M., Zhu, H., Chen, M., Bartsch, D., Bailey, C. H., and Kandel, E. R. (1999). A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99:221-237.

    Google Scholar 

  • Chanda, P. K., Minchin, M. C. W., Davis, A. R., Greenberg, L., Reilly, Y., McGregor, W. H., Bhat, R., Lubeck, M. D., Mizutani, S., and Hung, P. P. (1993). Identification of residues important for ligand binding to the human 5-hydroxytryptamine1A serotonin receptor. Mol. Pharmacol. 43:516-520.

    Google Scholar 

  • Charest, A., Wainer, B. H., and Albert, P. R. (1993). Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J. Neurosci. 13:5164-5171.

    Google Scholar 

  • Chattopadhyay, A., and Harikumar, K. G. (1996). Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: Implications in receptor solubilization. FEBS Lett. 391:199-202.

    Google Scholar 

  • Chattopadhyay, A., Rukmini, R., and Mukherjee, S. (1996). Photophysics of a neurotransmitter: Ionization and spectroscopic properties of serotonin. Biophys. J. 71: 1952-1960.

    Google Scholar 

  • Clapham, D. E. (1996). The G-protein nanomachine. Nature 379:297-299.

    Google Scholar 

  • Dohlman, H. G., Caron, M. G., DeBlasi, A., Frielle, T., and Lefkowitz, R. J. (1990). Role of extracellular disulfide-bonded cysteines in the ligand binding functions of the β 2 adrenergic receptor. Biochemistry 29:2335-2342.

    Google Scholar 

  • Dourish, C. T., Ahlenius, S., and Hutson, P. H. (1987). Brain 5-HT 1A Receptors, Ellis Horwood, Chichester, U.K.

    Google Scholar 

  • El Mestikawy, S., Riad, M., Laporte, A. M., Verge, D., Daval, G., Gozlan, H., and Hamon, M. (1990). Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci. Lett. 118:189-192.

    Google Scholar 

  • Emerit, M. B., El Mestikawy, S., Gozlan, H., Rouot, B., and Hamon, M. (1990). Physical evidence of the coupling of solubilized 5-HT1A binding sites with G regulatory proteins. Biochem. Pharmacol. 39:7-18.

    Google Scholar 

  • Emerit, M. B., Miquel, M. C., Gozlan, H., and Hamon, M. (1991). The GTP-insensitive component of high affinity [3H]8-hydroxy-2-(di-n-propylamino)tetralin in the rat hippocampus corresponds to an oxidized state of the 5-hydroxytryptamine1A receptor. J. Neurochem. 56:1705-1716.

    Google Scholar 

  • Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988). The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358-360.

    Google Scholar 

  • Gaibelet, G., Capeyrou, R., Dietrich, G., and Emorine, L. J. (1997). Identification in the μ-opioid receptor of cysteine residues responsible for inactivation of ligand binding by thiol alkylating and reducing agents. FEBS Lett. 408:135-140.

    Google Scholar 

  • Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J., and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140-142.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1998a). Metal ion and guanine nucleotide modulations of agonist interaction in G-protein-coupled serotonin1A receptors from bovine hippocampus. Cell. Mol. Neurobiol. 18:535-553.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1998b). Modulation of agonist and antagonist interactions in serotonin1A receptors by alcohols. FEBS Lett. 438:96-100.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1999). Differential discrimination of G-protein coupling of serotonin1A receptors from bovine hippocampus by an agonist and an antagonist. FEBS Lett. 457:389-392.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (2000). Effect of alcohols on G-protein coupling of serotonin1A receptors from bovine hippocampus. Brain Res. Bull. 52:597-601.

    Google Scholar 

  • Heisler, L. K., Chu, H.-M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., and Tecott, L. H. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl. Acad. Sci. USA 95:15049-15054.

    Google Scholar 

  • Ho, B. Y., Karschin, A., Branchek, T., Davidson, N., and Lester, H. A. (1992). The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: A site directed mutation study. FEBS Lett. 312:259-262.

    Google Scholar 

  • Hulme, E. C. (1990). Receptor binding studies, a brief outline. In Hulme, E. C. (ed.), Receptor-Effector Coupling: A Practical Approach, IRL Press, New York, pp. 203-215.

    Google Scholar 

  • Jacobs, B. L., and Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72:165-229.

    Google Scholar 

  • Javitch, J. A., Li, X., Kaback, J., and Karlin, A. (1994). A cysteine residue in the third membranespanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. USA 91:10355-10359.

    Google Scholar 

  • Ji, T. H., Grossmann, M., and Ji, I. (1998). G protein-coupled receptors I. Diversity of receptor-ligand interactions. J. Biol. Chem. 273:17299-17302.

    Google Scholar 

  • Kamikubo, K., Murase, H., Murayama, M., Matsuda, M., and Miura, K. (1988). Evidence for disulfide bonds in membrane-bound and solubilized opioid receptors. J. Neurochem. 50:503-509.

    Google Scholar 

  • Karnik, S. S., Sakmar, T. P., Chen, H. B., and Khorana, H. G. (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 85:8459-8463.

    Google Scholar 

  • Kitamura, Y., and Nomura, Y. (1987). Uncoupling of rat cerebral cortical α2-adrenoceptors from GTP-binding proteins by N-ethylmaleimide. J. Neurochem. 49:1894-1901.

    Google Scholar 

  • Kobilka, B. K. (1992). Adrenergic receptors as model for G protein-coupled receptors. Annu. Rev. Neurosci. 15:87-114.

    Google Scholar 

  • Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowicz, R. J., and Caron, M. G. (1987). An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75-79.

    Google Scholar 

  • Kong, H., Raynor, K., Yano, H., Takeda, J., Bell, G. I., and Reisine, T. (1994). Agonists and antagonists bind to different domains of the cloned kappa opioid receptor. Proc. Natl. Acad. Sci. USA 91:8042-8046.

    Google Scholar 

  • Kuipers, W., Link, R., Standaar, P. J., Stoit, A. R., Van Wijngaarden, I., Leurs, R., and Ijzerman, A. P. (1997). Study of the interaction between aryloxypropanolamines and Asn386 in helix VII of the human 5-hydroxytryptamine1A receptor. Mol. Pharmacol. 51:889-896.

    Google Scholar 

  • Kung, H. F., Kung, M.-P., Clarke, W., Maayani, S., and Zhuang, Z.-P. (1994). A potential 5-HT1A receptor antagonist: p-MPPI. Life Sci. 55:1459-1462.

    Google Scholar 

  • Kung, M.-P., Frederick, D., Mu, M., Zhuang, Z.-P., and Kung H. F. (1995). 4-(2'-methoxy)-phenyl)-1[2'-(n-2”-pyridinyl)-p-iodobenzamido]ethyl-piperazine, ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: In vitro binding and autoradiographic studies. J. Pharmacol. Exp. Ther. 272:429-437.

    Google Scholar 

  • Kung, M.-P., Zhuang, Z.-P., Frederick, D., and Kung, H. F. (1994). In vivo binding of [123I]4-(2'-methoxy)-phenyl)-1-[2'-(N-2”-pyridinyl)-p-iodobenzamido]ethyl-piper azine, p-MPPI, to 5-HT1A receptors in rat brain. Synapse 18:359-366.

    Google Scholar 

  • Lam, S., Shen, Y., Nguyen, T., Messier, T. L., Brann, M., Comings, D., George, S. R., and O'Dowd, B. F. (1996). A serotonin receptor gene (5HT1A) variant found in a Tourette's syndrome patient. Biochem. Biophys. Res. Commun. 219:853-858.

    Google Scholar 

  • Lin, S., Gether, U., and Kobilka, B. K. (1996). Ligand stabilization of the β 2 adrenergic receptor: Effect of DTT on receptor conformation monitored by circular dichroism and fluorescence spectroscopy. Biochemistry 35:14445-14451.

    Google Scholar 

  • Martini, C., Trincavelli, L., and Lucacchini, A. (1997). Chemical modfications of striatal A2A adenosine receptors: A possible role for tyrosine at the ligand binding sites. Biochim. Biophys. Acta 1326:67-74.

    Google Scholar 

  • Nenonene, E. K., Radja, F., Carli, M., van Gelder, N. M., Afkhami-Dastjerdian, S., and Reader, T. A. (1996). Alkylation of [3H]8-8-OH-DPAT binding sites in rat cerebral cortex and hippocampus. Neurochem. Res. 21:167-176.

    Google Scholar 

  • Ohno, M., and Watanabe, S. (1996). Blockade of 5-HT1A receptors compensates loss of hippocampal cholinergic neurotransmission involved in working memory of rats. Brain Res. 736:180-188.

    Google Scholar 

  • Ostrowski, J., Kjelsberg, M. A., Caron, M. G., and Lefkowitz, R. J. (1992). Mutagenesis of the β 2-adrenergic receptor: how structure elucidates function. Annu. Rev. Pharmacol. Toxicol. 32:167-183.

    Google Scholar 

  • Palacios, J. M., Waeber, C., Hoyer, D., and Mengod, G. (1990). Distribution of serotonin receptors. Ann. N. Y. Acad. Sci. 600:36-52.

    Google Scholar 

  • Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., and Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl. Acad. Sci. USA 95:10734-10739.

    Google Scholar 

  • Peroutka, S. J. (1993). 5-Hydroxytryptamine receptors. J. Neurochem. 60:408-416.

    Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., Mann, J. J., Brunner, D., and Hen, R. (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA 95:14476-14481.

    Google Scholar 

  • Rocha, B. A., Scearce-Levie, K., Lucas, J. J., Hiroi, N., Castanon, N., Crabbe, J. C., Nestler, E. J., and Hen, R. (1998). Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393:175-178.

    Google Scholar 

  • Ruat, M., Traiffort, E., Leurs, R., Tardivel-Lacombe, J., Diaz, J., Arrang, J.-M., and Schwartz, J.-C. (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc. Natl. Acad. Sci. USA 90:8547-8551.

    Google Scholar 

  • Savarese, T. M., Wang, C. D., and Fraser, C. M. (1992). Site-directed mutagenesis of the ratm1 muscarinic acetylcholine receptor: Role of conserved cysteines in receptor function. J. Biol. Chem. 267:11439-11448.

    Google Scholar 

  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76-85.

    Google Scholar 

  • Strader, C.D., Fong, T. M., Graziano, M. P., and Tota, M. R. (1995). The family of G-protein-coupled receptors. FASEB J. 9:745-754.

    Google Scholar 

  • Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D., and Dixon, R. A. (1994). Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 63:101-132.

    Google Scholar 

  • Sylte, I., Edvardsen, O., and Dahl, S. G. (1996). Molecular modelling of UH-301 and 5-HT1A receptor interactions. Protein Eng. 9:149-160.

    Google Scholar 

  • Thielen, R. J., and Frazer, A. (1995). Effects of novel 5-HT1A receptor antagonists on measures of postsynaptic 5-HT1A receptor activation in vivo. Life Sci. 56:163-168.

    Google Scholar 

  • Vanhoenacker, P., Haegeman, G., and Leysen, J. E. (2000). 5-HT7 receptors: Current knowledge and future prospects. Trends Pharmacol. Sci. 21:70-77.

    Google Scholar 

  • Wang, C.-D., Gallaher, T. K., and Shih, J. C. (1993). Site-directed mutagenesis of the serotonin 5-hydroxytryptamine2 receptor: Identification of amino acids necessary for ligand binding and receptor activation. Mol. Pharmacol. 43:931-940.

    Google Scholar 

  • Zifa, E., and Fillion, G. (1992). 5-Hydroxytryptamine receptors. Pharmacol. Rev. 44:401-458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harikumar, K.G., John, P.T. & Chattopadhyay, A. Role of Disulfides and Sulfhydryl Groups in Agonist and Antagonist Binding in Serotonin1A Receptors from Bovine Hippocampus. Cell Mol Neurobiol 20, 665–681 (2000). https://doi.org/10.1023/A:1007046707845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007046707845

Navigation