Skip to main content
Log in

Barriers in the Immature Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The term “blood–brain barrier” describes a range of mechanisms that control the exchange of molecules between the internal environment of the brain and the rest of the body.

2. The underlying morphological feature of these barriers is the presence of tight junctions which are present between cerebral endothelial cells and between choroid plexus epithelial cells. These junctions are present in blood vessels in fetal brain and are effective in restricting entry of proteins from blood into brain and cerebrospinal fluid. However, some features of the junctions appear to mature during brain development.

3. Although proteins do not penetrate into the extracellular space of the immature brain, they do penetrate into cerebrospinal fluid by a mechanism that is considered in the accompanying review (Dziegielewska et al., 2000).

4. In the immature brain there are additional morphological barriers at the interface between cerebrospinal fluid and brain tissue: strap junctions at the inner neuroependymal surface and these and other intercellular membrane specializations at the outer (pia–arachnoid) surface. These barriers disappear later in development and are absent in the adult.

5. There is a decline in permeability to low molecular weight lipid-insoluble compounds during brain development which appears to be due mainly to a decrease in the intrinsic permeability of the blood–brain and blood–cerebrospinal fluid interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Adinolfi, M., and Haddad, S. A. (1977). Levels of plasma proteins in human and rat fetal CSF and the development of the blood-CSF barrier. Neuropediatrie 8:345–353.

    Google Scholar 

  • Arthur, F. E., Shivers, R. R., and Bowman, P. D. (1987). Astrocyte mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model. Dev. Brain Res. 36:155–159.

    Google Scholar 

  • Balslev, Y., Dziegielewska, K. M., Møllgård, K., and Saunders, N. R. (1997a). Intercellular barriers to and transcellular transfer of protein albumin in the fetal sheep. Anat. Embryol. 195:229–236.

    PubMed  Google Scholar 

  • Balslev, Y., Saunders, N. R., and Møllgård, K. (1997b). The surface CSF-brain barrier in the developing rat brain. J. Neurocytol. 26:133–148.

    PubMed  Google Scholar 

  • Bauer, H.-C., and Bauer, H. (2000). Neural induction of the blood-brain barrier: Still an enigma. Cell. Mol. Neurobiol. 20:13–28.

    PubMed  Google Scholar 

  • Bauer, H.-C., Bauer, H., Lamenschwandtner, A., Amberger, A., Ruiz, P., and Steiner, M. (1993). Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Dev. Brain Res. 75:269–278.

    Google Scholar 

  • Bradbury, M. W. B. (2000). Hugh Davson-His contribution to the physiology of the cerebrospinal fluid and blood-brain barrier. Cell. Mol. Neurobility. 20:7–11.

    Google Scholar 

  • Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648–677.

    PubMed  Google Scholar 

  • Brightman, M. W., and Tao-Cheng, J. H. (1993). Tight junctions of brain endothelium and epithelium. In Pardridge, W. M. (ed.), The Blood-Brain Barrier, Cellular and Molecular Biology, Raven, New York, pp. 107–125.

    Google Scholar 

  • Caley, W. D., and Maxwell, D. S. (1970). Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J. Comp. Neurol. 138:31–48.

    PubMed  Google Scholar 

  • Caviness, V. S., Jr., Takahashi, T., and Nowakowski, R. S. (1995). Numbers, time and neocortical neurogenesis: A general developmental and evolutionary model. Trends Neurosci. 18:379–383.

    PubMed  Google Scholar 

  • Davson, H. (1988). History of the blood-brain barrier concept. In Neufeldt, E. A. (ed.), Implications of the Blood-Brain Barrier, Vol. 1, Plenum, New York, pp. 27–52.

    Google Scholar 

  • Davson, H., and Segal, M. B. (1996). Physiology of the CSF and Blood-Brain Barriers, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dziegielewska, K. M., and Saunders, N. R. (1988). The development of the blood-brain barrier: Proteins in fetal and neonatal CSF, their nature and origins. In Meisami, E., and Timiras, P. J. (eds.), Handbook of Human Growth and Developmental Biology, Vol. 1A, CRC, Boca Raton, FL, pp. 169–191.

    Google Scholar 

  • Dziegielewska, K. M., Evans, C. A. N., Malinowska, D., Møllgård, K., Reynolds, J. M., Reynolds, M. L., and Saunders, N. R. (1979). Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J. Physiol. 292:207–231.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Evans, C. A. N., Malinowska, D. H., Møllgård, K., Reynolds, M. L., and Saunders, N. R. (1980). Blood-cerebrospinal fluid transfer of plasma proteins during fetal development in the sheep. J. Physiol. 300:457–465.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Habgood, M. D., Møllgård, K., Stagaard, M., and Saunders, N. R. (1991). Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep. J. Physiol. 439:215–237.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Knott, G. W., and Saunders, N. R. (2000). The nature and composition of the internal environment of the developing brain. Cell. Mol. Neurobiol. 20:41–56.

    PubMed  Google Scholar 

  • Evans, C. A. N., Reynolds, J. M., Reynolds, M. L., Saunders, N. R., and Segal, M. B. (1974) The development of a blood-brain barrier mechanism in foetal sheep. J. Physiol. 238:371–386.

    PubMed  Google Scholar 

  • Ferguson, R. K., and Woodbury, D. M. (1969). Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid and skeletal muscle of developing rats. Exp. Brain Res. 7:181–194.

    PubMed  Google Scholar 

  • Fossan, G., Cavanagh, M. E., Evans, C. A. N., Malinowska, D. H., Møllgård, K., Reynolds, M. L., and Saunders, N. R. (1985). CSF-brain permeability in the immature sheep fetus: A CSF-brain barrier. Dev. Brain Res. 18:113–124.

    Google Scholar 

  • Habgood, M. D., Sedgwick, J. E. C., Dziegielewska, K. M., and Saunders, N. R. (1992). A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. J. Physiol. 456:181–192.

    PubMed  Google Scholar 

  • Habgood, M. D., Knott, G. W., Dziegielewska, K. M., and Saunders, N. R. (1993). The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J. Physiol. 468:73–83.

    PubMed  Google Scholar 

  • Holash, J. A., Noden, D. M., and Stewart, P. A. (1993). Re-evaluating the role of astrocytes in bloodbrain barrier induction. Dev. Dynam. 197:14–25.

    Google Scholar 

  • Jacobson, M. (1991). Developmental Neurobiology, 3rd ed., Plenum Press, New York.

    Google Scholar 

  • Janzer, R. C., and Raff, M. C. (1987). Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257.

    PubMed  Google Scholar 

  • Jóo, F. (1995). Isolated brain microvessels and cultured cerebral endothelial cells in blood-brain barrier research: 20 years on. In Greenwood, J., Begley, D. J., and Segal, M. B. (eds.), New Concepts of a Blood-Brain Barrier, Plenum Press, New York, pp. 229–237.

    Google Scholar 

  • Kniesel, U., and Wolburg, H. (2000). Tight junctions of the blood-brain barrier. Cell. Mol. Neurobiol. 20:57–76.

    PubMed  Google Scholar 

  • Kniesel, U., Risau, W., and Wolburg, H. (1996). Development of blood-brain barrier tight junctions in the rat cortex. Dev. Brain Res. 96:259–240.

    Google Scholar 

  • Knott, G. W., Dziegielewska, K. M., Habgood, M. D., Li, Z. S., and Saunders, N. R. (1997). Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica). J. Physiol. 499:179–194.

    PubMed  Google Scholar 

  • Lane, M., Ek, J., Potter, A., and Dziegielewska, K. M. (1999). Route of transfer for small lipid insoluble molecules from blood into cerebrospinal fluid in the developing brain. Proc. Aust. Neuroscience Soc. 10:112.

    Google Scholar 

  • Marin-Padilla, M. (1995). Prenatal development of fibrous (white matter), protoplasmic (grey matter), and layer I astrocytes in the human cerebral cortex: A Golgi study. J. Comp. Neurol. 357:554–572.

    PubMed  Google Scholar 

  • Møllgård, K., Malinowska, D. H., and Saunders, N. R. (1976). Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature 264:293–294.

    PubMed  Google Scholar 

  • Møllgård, K., Lauritzen, B., and Saunders, N. R. (1979). Double replica technique applied to choroid plexus from early fetal sheep: Completeness and complexity of tight junctions. J. Neurocytol. 8:139–149.

    PubMed  Google Scholar 

  • Møllgård, K., Balslev, Y., Lauritzen, B., and Saunders, N. R. (1987). Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: A CSF-brain barrier. J. Neurocytol. 16:433–444.

    PubMed  Google Scholar 

  • Moos, T., and Møllgård, K. (1993). Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol. Appl. Neurobiol. 19:120–127.

    PubMed  Google Scholar 

  • Nabeshima, S., Reese, T. S., Landis, D. M. D., and Brightman, M. W. (1975). Junctions in the meninges and marginal glia. J. Comp. Neurol. 164:127–170.

    PubMed  Google Scholar 

  • Oldendorf, W. H., and Davson, H. (1967). Brain extracellular space and the sink action of cerebrospinal fluid. Arch. Neurol. Psychiatr. 17:196–205.

    Google Scholar 

  • Rakic, P. (1971). Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33:471–476.

    PubMed  Google Scholar 

  • Rascher, G., and Wolburg, H. (1997). The tight junctions of the leptomeningeal blood-CSF barrier during development. J. Brain Res. 38:525–540.

    Google Scholar 

  • Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–217.

    PubMed  Google Scholar 

  • Rubin L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. I., Tomaselli, K. J., and Bard, F. (1991). A cell culture model of the blood-brain barrier. J. Cell Biol. 115:1725–1735.

    Google Scholar 

  • Saunders, N. R. (1992). Ontogenetic development of brain barrier mechanisms. In Bradbury, M. W. B. (ed.), Handbook of Experimental Pharmacology, Vol. 103. Physiology and Pharmacology of the Blood-Brain Barrier, Chap. 14, Springer-Verlag, Berlin.

    Google Scholar 

  • Saunders, N. R., and Dziegielewska, K. M. (1997). Barriers in the developing brain. News Physiol. Sci. 12:21–31.

    Google Scholar 

  • Saunders, N. R., Dziegielewska, K. M., Ek, J., and Møllgård, K. (1999a). Morphological and physiological aspects of barriers in the developing brain. In Paulson, O., Moos Knudsen, G., and Moos, T. (eds.), Alfred Benzon Symposium 45, Barriers in the Brain, Munksgaard, Copenhagen, pp. 209–218.

    Google Scholar 

  • Saunders, N. R., Habgood, M. D., and Dziegielewska, K. M. (1999b). Barrier mechanisms in the brain. Part 2. The immature brain. Clin Exp. Pharmacol. Physiol. 26:85–91.

    PubMed  Google Scholar 

  • Schultze, C., and Firth, J. A. (1992). Interendothelial junctions during blood-brain barrier development in the rat: morphological changes at the level of individual tight junctional contacts. Dev. Brain Res. 69:85–95.

    Google Scholar 

  • Stern, L., and Gautier, R. (1992). Les Rapports entre le liquide céphalorachidien et les éléments nerveux de l'axe cérébrospinal. Arch. Int. Physiol. 17:391–448.

    Google Scholar 

  • Stewart, P. A., and Hayakawa, K. (1994). Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Dev. Brain Res. 78:25–34.

    Google Scholar 

  • Stewart, P. A., and Wiley, M. J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev. Biol. 84:183–192.

    PubMed  Google Scholar 

  • Tschirgi, R. D. (1950). Protein complexes and the impermeability of the blood-brain barrier to dyes. Am. J. Physiol. 163:756P.

    Google Scholar 

  • Wislocki, G. B. (1920). Experimental studies on fetal absorption. I. The vitally stained fetus. Contrib. Embryol. Carnegie Inst. 5:45–52.

    Google Scholar 

  • Wolff, J. R., and Barr, Th. (1976). Development and adult variations of the pericapillary glial sheath in the cortex of rat. In Cervos-Navarro, J., et al.(ed.), The Cerebral Vessel Wall, Raven, New York, pp. 7–13.

    Google Scholar 

  • Zerlin, M., and Goldman, J. E. (1997). Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: Blood vessel contact represents an early stage of astrocyte differentiation. J. Comp. Neurol. 87:537–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, N.R., Knott, G.W. & Dziegielewska, K.M. Barriers in the Immature Brain. Cell Mol Neurobiol 20, 29–40 (2000). https://doi.org/10.1023/A:1006991809927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006991809927

Navigation