Skip to main content
Log in

Metabolism of Monoamine Oxidase Inhibitors

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The principal routes of metabolism of the following monoamine oxidase inhibitors (MAOIs) are described: phenelzine, tranylcypromine, pargyline, deprenyl, moclobemide, and brofaromine.

2. Acetylation of phenelzine appears to be a minor metabolic pathway. Phenelzine is a substrate as well as an inhibitor of MAO, and major identified metabolites of phenelzine include phenylacetic acid and p-hydroxyphenylacetic acid. Phenelzine also elevates brain GABA levels, and as yet unidentified metabolites of phenelzine may be responsible for this effect. β-Phenylethylamine is a metabolite of phenelzine, and there is indirect evidence that phenelzine may also be ring-hydroxylated and N-methylated.

3. Tranylcypromine is ring-hydroxylated and N-acetylated. There is considerable debate about whether or not it is metabolized to amphetamine, with most of studies in the literature indicating that this does not occur.

4. Pargyline and R(−)-deprenyl, both propargylamines, are N-demethylated and N-depropargylated to yield arylalkylamines (benzylamine, N-methylbenzylamine, and N-propargylbenzylamine in the case of pargyline and amphetamine, N-methylamphetamine and N-propargylamphetamine in the case of deprenyl). These metabolites may then undergo further metabolism, e.g., hydroxylation.

5. Moclobemide is biotransformed by C- and N-oxidation on the morpholine ring and by aromatic hydroxylation. An active metabolite of brofaromine is formed by O-demethylation. It has been proposed that another as yet unidentified active metabolite may also be formed in vivo.

6. Preliminary results indicate that several of the MAOIs mentioned above are substrates and/or inhibitors of various cytochrome P450 (CYP) enzymes, which may result in pharmacokinetic interactions with some coadministered drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alleva, J. J. (1965). Metabolism of tranylcypromine-C14 and d, 1-amphetamine-C14 in the rat. J. Med. Chem. 6:621–624.

    Google Scholar 

  • Axelrod, J. (1955). The enzymatic deamination of amphetamine (benzedrine). J. Biol. Chem. 214:753–763.

    Google Scholar 

  • Baker, G. B., Legatt, D. F., and Coutts, R. T. (1982). Effects of acute and chronic administration of phenelzine on β-phenylethylamine levels in rat brain. Proc. West Pharmacol. Soc. 25:417–420.

    Google Scholar 

  • Baker, G. B., Hampson, D. R., Coutts, R. T., Micetich, R. G., Hall, T. W. and Rao, T.S. (1986). Detection and quantitation of a ring-hydroxylated metabolite of the antidepressant drug tranylcypromine. J. Neural Transm. 65:233–244.

    Google Scholar 

  • Baker, G. B., Wong, J. T.-F., Yeung, J. M. and Coutts, R. T. (1991). Effects of the antidepressant phenelzine on brain levels of γ-aminobutyric acid (GABA). J. Affect. Dis. 21:207–211.

    Google Scholar 

  • Bakish, D., Hooper, C. L., West, D. L., Miller, C., Blanchard, A., and Bashir, F. (1995). Moclobemide and specific serotonin re-uptake inhibitor combination treatment of resistant anxiety and depressive disorders. Hum. Psychopharmacol. 10:105–109.

    Google Scholar 

  • Belanger, P. M., and Atitse-Gbeasson, A. (1982). Inhibitory effect of tranylcypromine on hepatic drug metabolism in the rat. Biochem. Pharmacol. 31:2679–2683.

    Google Scholar 

  • Bieck, P., Firkunsky, L., Schick, C., Antonin, K. H., Nilsson, E., Schultz, R., Scwenk, M., and Wollmann, H. (1989). Monoamine oxidase inhibition by phenelzine and brofaromine in healthy volunteers. Clin. Pharmacol. Ther. 45:260–269.

    Google Scholar 

  • Bieck, P. R., Antonin, K.-H., and Schmidt, E. (1993). Clinical pharmacology of reversible monoamine oxidase-A inhibitors. Clin. Neuropharmacol. 16:S34-S41

    Google Scholar 

  • Billings, R. E., Murphy, P. J., McMahon, R. E., and Ashmore, J. (1978). Aromatic hydroxylation of amphetamine with rat liver microsomes, perfused liver, and isolated hepatocytes. Biochem. Pharmacol. 27:2525–2529.

    Google Scholar 

  • Calverley, D. G., Baker, G. B., Coutts, R. T., and Dewhurst, W. G. (1981). A technique for measurement of tranylcypromine in rat brain regions using gas chromatography with electron-capture detection. Biochem. Pharmacol. 30:861–867.

    Google Scholar 

  • Clineschmidt, B. V., and Horita, A. (1969a). The monoamine oxidase catalyzed degradation of phenelzine-1-14C, an irreversible inhibitor of monoamine oxidase. I. Studies in vitro. Biochem. Pharmacol. 18:1011–1020.

    Google Scholar 

  • Clineschmidt, B. V., and Horita, A. (1969b). The monoamine oxidase-catalyzed degradation of phenelzine-14C, an irreversible inhibitor of monoamine oxidase—II. Biochem. Pharmacol. 18:1021–1029.

    Google Scholar 

  • Coutts, R. T., Foster, B. C. and Pasutto, F. M. (1981). Fungal metabolism of (−)-deprenyl and pargyline. Life Sci. 29:1951–1958.

    Google Scholar 

  • Coutts, R. T., Prelusky, D. B., and Baker, G. B., (1984). Determination of amphetamine, norephedrine and their phenolic metabolites in rat brain by gas-liquid chromatography. J. Pharm. Sci. 73:808–812.

    Google Scholar 

  • Coutts, R. T., Rao, T. S., Baker, G. B., Micetich, R. G., and Hall, T. W. (1987). Neurochemical and neuropharmacological properties of para-fluorotranylcypromine. Cell. Mol. Neurobiol. 7:271–290.

    Google Scholar 

  • Coutts, R. T., Mozayani, A., Danielson, T. J., and Baker, G. B. (1991). Tissue levels and some pharmacological properties of an acetylated metabolite of phenelzine in the rat. J. Pharm. Sci. 80:765–767.

    Google Scholar 

  • Danielson, T. J., Torok-Both, G., and Coutts, R. T. (1984). Effect of chronic phenelzine in the rat; altered tissue weights and metabolism of 14C-phenelzine. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 8:677–682.

    Google Scholar 

  • Da Prada, M., Kettler, R., Keller, H. H., Burkard W. P., and Haefly, W. E. (1989). Preclinical profiles of the novel reversible MAO-A inhibitors, moclobemide and brofaromine, in comparison with irreversible MAO inhibitors. J. Neural Transm. 28:5–20.

    Google Scholar 

  • Dilsaver, S. C. (1988). Monoamine oxidase inhibitor withdrawal phenomenon: Symptoms and pathophysiology. Acta Psychiat. Scand. 78:1–7.

    Google Scholar 

  • Dingemanse, J. (1993). An update of recent moclobemide interaction data. Int. Clin. Psychopharmacol. 7:167–180.

    Google Scholar 

  • Dingemanse, J., Kneer, J., Fotteler, B., Groen, H., Peeters, P. A. M., and Jonkman, J. H. G. (1995). Switch in treatment from tricyclic antidepressants to moclobemide: A new generation monoamine oxidase inhibitor. J. Clin. Psychopharmacol. 15:41–48.

    Google Scholar 

  • Dupont, H., Davies, D. S., and Strolin-Benedetti, M. (1987). Inhibition of cytochrome P-450-dependent oxidation reactions by MAO inhibitors in rat liver microsomes. Biochem. Pharmacol. 36:1651–1657.

    Google Scholar 

  • Durden, D. A., Philips, S. R., and Boulton, A. A. (1976). Identification and distribution of benzylamine in tissue extracts isolated from rats pretreated with pargyline. Biochem. Pharmacol. 25:858–859.

    Google Scholar 

  • Dyck, L. E., Durden, D. A., and Boulton, A. A. (1985). Formation of β-phenylethylamine from the antidepressant, β-phenylethylhydrazine. Biochem. Pharmacol. 34:1925–1929.

    Google Scholar 

  • Eade, N. R., and Renton, K.W. (1970). Effect of monoamine oxidase inhibitors on the N-demethylation and hydrolysis of meperidine. Biochem. Pharmacol. 19:2243–2250.

    Google Scholar 

  • Foster, B. C., Lister, D. L., Zamecnik, J., and Coutts, R. T. (1991). The biotransformation of tranylcypromine by Cunninghamella echinulata. Can. J. Microbiol. 37:791–795.

    Google Scholar 

  • Fuentes, J. A., Oleshansky, M. A., and Neff, N. H. (1976). Comparison of the antidepressant activity of (−) and (+) tranylcypromine in an animal model. Biochem. Pharmacol. 25:801–804.

    Google Scholar 

  • Gillis, M. C. (ed.) (1997). Compendium of Pharmaceuticals and Specialties (CPS), 1st (ed.) Canadian Pharmaceutical Association, Toronto, pp. 880–881.

    Google Scholar 

  • Gitow, A., Liebowitz, M. R., and Schneider, F. R. (1994). MAOI therapy of social phobia. In Kennedy, S. H. (ed.), Clinical Advances in Monoamine Oxidase Inhibitor Therapies, American Psychiatric Press, Washington, DC, pp. 225–253.

    Google Scholar 

  • Goldstein, J. A., Faletto, M. B., Ramdses-Sparks, M., Sullivan, T., Kitaruwan, S., Raucy, T. L., Lasker, J. M., and Ghanyem, B. I. (1994). Evidence that CYP2C19 is the major (S)-mephenytoin 4-hydroxylase in humans. Biochemistry 33:1743–1752.

    Google Scholar 

  • Grace, J. M., Kinter, M. T., and Macdonald, T. L. (1994). Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N, α-Dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6. Chem. Res. Toxicol. 7:286–290.

    Google Scholar 

  • Gram, L. F., and Brøsen, K. (1993). Moclobemide treatment causes a substantial rise in the sparteine metabolic ratio. Br. J. Clin. Pharmacol. 35:649–652.

    Google Scholar 

  • Gram, L. F., Guentert, T. W., Grange, S., Vistisen, K., and Brøsen, K. (1995). Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: A panel study. Clin. Pharmacol. Ther. 57:670–677.

    Google Scholar 

  • Hampson, D. R., Baker, G. B., and Coutts, R. T. (1986). A comparison of the neurochemical properties of the stereoisomers of tranylcypromine in the central nervous system. Cell. Mol. Biol. 32:593–599.

    Google Scholar 

  • Härtter, S., Dingemanse, J., Baier, D., Ziegler, G., and Hiemke, C. (1996). The role of cytochrome P450 2D6 in the metabolism of moclobemide. Eur. Neuropsychopharmacol. 6:225–230.

    Google Scholar 

  • Harvey, A. T., and Preskorn, S. H. (1996a). Cytochrome P450 enzymes: Interpretation of their interactions with selective serotonin reuptake inhibitors. Part I. J. Clin. Psychopharmacol. 16:273–285.

    Google Scholar 

  • Harvey, A. T., and Preskorn, S. H. (1996b). Cytochrome P450 enzymes: Interpretation of their interactions with selective serotonin reuptake inhibitors. Part II. J. Clin. Psychopharmacol. 16:345–354.

    Google Scholar 

  • Heinonen, E. H., Anttila, M. I., and Lammintausta, R. A. S. (1994). Pharmacokinetic aspects of 1-deprenyl (selegiline) and its metabolites. Clin. Pharmacol. Ther. 56:742–749.

    Google Scholar 

  • Hyman, S. E., Arana, G. W., and Rosenbaum, J. F. (1995). Handbook of Psychiatric Drug Therapy, Little, Brown, Boston.

    Google Scholar 

  • Inaba, T., Jurima, M., Mahon, W. A., and Kalow, W. (1985). Mephenytoin and sparteine pharmacogenetics in Canadian Caucasians. Drug Metab. Dispos. 13:443–448.

    Google Scholar 

  • Iwersen, S., and Schmoldt, A. (1996). One fatal and one nonfatal intoxication with tranylcypromine. Absence of amphetamines as metabolites. J. Anal. Toxicol. 20:301–304.

    Google Scholar 

  • Jauch, R., Griesser, E., Oesterhelt, G., Arnold, W., Meister, W., Ziegler, W. H., and Guntert, T. W. (1990). Biotransformation of moclobemide in humans. Acta Psychiatr. Scand. 82(Suppl. 360):87–91.

    Google Scholar 

  • Jedrychowski, M., Feifel, N., Bieck, P. R., and Schmidt, E. K. (1993). Metabolism of the new MAO-A inhibitor brofaromine in poor and extensive metabolizers of debrisoquine. J. Pharm. Biochem. Anal. 11:251–255.

    Google Scholar 

  • Jefferson, J. W. (1992). Is tranylcypromine really metabolized to amphetamine? J. Clin. Psychiat. 53:450–451.

    Google Scholar 

  • Johnson, M. R., Lydiard, R. B., and Ballenger, J. C. (1994). MAOIs in panic disorder and agoraphobia. In Kennedy, S. H. (ed.), Clinical Advances in Monoamine Oxidase Inhibitor Therapies, American Psychiatric Press, Washington, DC, pp. 205–224.

    Google Scholar 

  • Kang, G. I., and Chung, S. Y. (1984). Identification of N-acetyl and hydroxylated N-acetyltranylcypromine from tranylcypromine-dosed rat urine. Arch. Pharm. Res. 7:65–68.

    Google Scholar 

  • Karoum, F. (1987). N-Propargylbenzylamine, a major metabolite of pargyline, is a potent inhibitor of monoamine oxidase type B in rats in vivo: Acomparison with deprenyl. Br. J. Pharmacol. 90:335–345.

    Google Scholar 

  • Karoum, F., Chuang, L.-W., Eisler, T., Calne, D. B., Liebowitz, M. R., Quitkin, F. M., Klein, D. F., and Wyatt, R. J. (1982). Metabolism of (−)-deprenyl to amphetamine and methamphetamine may be responsible for deprenyl's therapeutic benefit: A biochemical assessment. Neurology 32:503–509.

    Google Scholar 

  • Keck, P. E., Carter, W. P., Nierenberg, A. A., Cooper, T. B., Potter, W. Z., and Rothschild, A. J. (1991). Acute cardiovascular effects of tranylcypromine: Correlation with plasma drug, metabolite, norepinephrine, and MHPG levels. J. Clin. Psychiat. 52:250–254.

    Google Scholar 

  • Lacroix, R., Pianezzola, E., and Benedetti, S. (1994). Sensitive high-performance liquid chromatographic method for the determination of the three main metabolites of selegiline (L-deprenyl) in human plasma. J. Chromatogr. B Biomed. Appl. 656:251–258.

    Google Scholar 

  • Lajtha, A., Sershen, H., Cooper, T., Hashim, A., and Gall, J. (1996). Metabolism of (−)-deprenyl and para-fluoro-(−)-deprenyl in brain after central and peripheral administration. Neurochem. Res. 21:1155–1160.

    Google Scholar 

  • Lane, R. M. (1996). Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int. Clin. Psychopharmacol. 11(Suppl. 5):31–61.

    Google Scholar 

  • Lang, A., Greißler, H. E., and Mutschler, E. (1979). Determination and comparison of the plasma and urine concentrations after administration of tranylcypromine stereoisomers. Arzneim-Forsch/Drug Res. 29:154–157.

    Google Scholar 

  • Lengyl, J., Magyar, K., Hollosi, I., Bartok, T., Bathori, M., Kalasz, H., and Furst, S. (1997). Urinary excretion of deprenyl metabolites. J. Chromatogr. A 762:321–326.

    Google Scholar 

  • Liebenberg, R., Berk, M., and Winkler, G. (1996). Serotonergic syndrome after concomitant use of moclobemide and fluoxetine. Hum. Psychopharmacol. 11:146–147.

    Google Scholar 

  • Mahmood, I. (1997). Clinical pharmacokinetics and pharmacodynamics of selegiline: an update. Clin. Pharmacokinet. 33:91–102.

    Google Scholar 

  • Mallinger, A. G., and Smith, E. (1991). Pharmacokinetics of monoamine oxidase inhibitors. Psychopharmacol. Bull. 27:493–502.

    Google Scholar 

  • Mallinger, A. G., Edwards, D. J., Himmelhoch, J. M., Knopf, S., and Elher, J. (1986). Pharmacokinetics of tranylcypromine in patients who are depressed: relationship to cardiovascular effects. Clin. Pharmacol. Ther. 40:444–450.

    Google Scholar 

  • Mallinger, A. G., Himmelhoch, J. M., Thase, M. E., Edwards, D. J., and Knopf, S. (1990). Plasma tranylcypromine: Relationship to the pharmacokinetic variables and clinical antidepressant actions. J. Clin. Psychopharmacol. 10:176–183.

    Google Scholar 

  • Mascher, H. J., Kikuta, C., Millendorfer, A., Schiel, H., and Ludwig, G. (1997). Pharmacokinetics and bioequivalence of the main metabolites of selegiline: desmethylselegiline, methamphetamine and amphetine after oral administration of selegiline. Int. J. Clin. Pharm. Therapeutics 35:9–13.

    Google Scholar 

  • Mayersohn, M., and Guentert, T. W. (1995). Clinical pharmacokinetics of the monoamine oxidase-A inhibitor moclobemide. Clin. Pharmacokinet. 29:292–332.

    Google Scholar 

  • McKenna, K. F. (1995). Effects of the Antidepressant/Antipanic Drug Phenelzine and an N-Acetyl Analogue on Biogenic Amines and Amino Acids, Ph.D. thesis, University of Alberta, Edmonton, Canada.

    Google Scholar 

  • McKenna, K. F., Baker, G. B., and Coutts, R. T. (1991a). N2-Acetylphenelzine: Effects on rat brain GABA, alanine and biogenic amines. Naunyn Schmied. Arch. Pharmacol. 343:478–482.

    Google Scholar 

  • McKenna, K. F., Yu, P. H., Davis, B. A., Baker, G. B., and Coutts, R. T. (1991b) Urinary excretion of bioactive amines in psychiatric patients treated with phenelzine. Proc. 14th Annu. Meet. Can. Coll. Neuropsychopharmacol., Hamilton, Ontario.

  • McKenna, K. F., Baker, G. B., Coutts, R. T., and Greenshaw, A. J. (1992). Chronic administration of the antidepressant/antipanic drug phenelzine and its N-acetyl analogue: effects on monoamine oxidase activity, biogenic amines and α-adrenoreceptor function. J. Pharm. Sci. 81:832–835.

    Google Scholar 

  • Mozayani, A., Coutts, R. T., Danielson, T. J., and Baker, G. B. (1988). Metabolic acetylation of phenelzine in rats. Res. Commun. Chem. Path. Pharmacol., 62:397–406.

    Google Scholar 

  • Mutschler, D., and Mohrke, W. (1983). Kinetics of MAO inhibitors. Mod. Probl. Pharmacopsychiat. 19:126–134.

    Google Scholar 

  • Mutschler, E., Gietl, Y., Krauss, D., Martin, E., Pflugmann, G., and Weber, H. (1990). Stereospecific analysis and human pharmacokinetics of the enantiomers of drugs administered as racemates. In Holmstedt, B., Frank, H., and Testa, B. (eds.), Chirality and Biological Activity, Alan R. Liss, New York, pp. 199–219.

    Google Scholar 

  • Mytilineou, C., Radcliffe, P. M., and Olanow, C. W. (1997). L-(−)-Desmethylselegiline, a metabolite of selegiline [L-(−)-Deprenyl], protects mesencephalic dopamine neurons from excitotoxicity in vitro. J. Neurochem. 68:434–436.

    Google Scholar 

  • Narasimhachari, N., Chang, S., and Davis, J. M. (1980). A test for “acetylator status” hypothesis for antidepressant response to phenelzine. Res. Commun. Psychol. Psychiatr. Behav. 5:199–204.

    Google Scholar 

  • Nazarali, A. J., Baker, G. B. and Coutts, R. T. (1987). Para-hydroxytranylcypromine: Presence in rat brain and heart following administration of tranylcypromine and an N-cyanoethyl analogue. Eur. J. Drug Metab. Pharmacokinet. 12:207–214.

    Google Scholar 

  • Nickolson, V. J. and Pinder, R. M. (1984). Antidepressant drugs: Chiral stereoisomers. In Smith, D. F. (ed.), Handbook of Stereoisomers: Drugs in Psychopharmacology, CRC Press, Boca Raton, FL, pp. 215–240.

    Google Scholar 

  • Ortiz de Montellano, P. R., and Watanabe, M. D. (1987). Free-radical pathways in the in vitro hepatic metabolism of phenelzine. Mol. Pharmacol. 31:213–219.

    Google Scholar 

  • Patek, D. R., and Hellerman, L. (1974). Mitochondrial monoamine oxidase. Mechanism of inhibition by phenylhydrazine and by arylkylhydrazines. Role of enzymatic oxidation. J. Biol. Chem. 249:2372–2380.

    Google Scholar 

  • Philips, S. R. (1981). Amphetamine, p-hydroxyamphetamine and β-phenylethylamine in mouse brain and urine after (−)-and (+)-deprenyl administration. J. Pharm. Pharmacol. 6:542–544.

    Google Scholar 

  • Philips, S. R., and Boulton, M. (1979). The effects of monoamine oxidase inhibitors on some arylalkylamines in the rat striatum. J. Neurochem. 33:159–167.

    Google Scholar 

  • Pirisino, R., Ciottoli, G. B., Buffoni, F., Anselmi, B., and Curradi, C. (1979). N-Methylbenzylamine, a metabolite of pargyline in man. Br. J. Clin. Pharmacol. 7:595.

    Google Scholar 

  • Popov, N., and Matthies, H. (1969). Some effects of monoamine oxidase inhibitors on the metabolism of γ-aminobutyric acid in rat brain. J. Neurochem. 16:899–907.

    Google Scholar 

  • Rao, T. S., Coutts, R. T., Baker, G. B., Hall, T. W. and Micetich, R. G. (1986). Analogs of tranylcypromine: Comparison of effects on monoamine oxidase in vitro. Proc. West Pharmacol. Soc. 29:279–281.

    Google Scholar 

  • Reynolds, G. P., Elsworth, J. D., Blau, K., Sandler, M., Lee, A. J., and Stern, G. M. (1978a). Deprenyl is metabolised to methamphetamine and amphetamine in man. Br. J. Pharmacol. 6:542–544.

    Google Scholar 

  • Reynolds, G. P., Riederer, R., Sandler, M., Jelenger, K., and Seeman, D. (1978b). Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (−)-deprenyl administration. J. Neural. Transm. 43:271–277.

    Google Scholar 

  • Reynolds, G. P., Rausch, W. G., and Riederer, P. (1980). Effects of tranylcypromine stereoisomers on monoamine oxidation in man. Br. J. Clin. Pharmacol. 9:521–523.

    Google Scholar 

  • Riederer, P., Reynolds, G. P., and Youdhim, M. B. H. (1981). In Youdim, M. B. H., and Paykel, E. S. (eds.), Monoamine Oxidase Inhibitors—The State of Art, Wiley, London, pp. 63–76.

    Google Scholar 

  • Robinson, D. S. (1983). High-dose monoamine oxidase-inhibitor therapy. JAMA 250:2212.

    Google Scholar 

  • Robinson, D. S., Neis, A., Ravaris, C. L., Ives, J. O., and Barlett, D. (1978). Clinical pharmacology of phenelzine. Arch. Gen. Psychiat. 35:629–635.

    Google Scholar 

  • Robinson, D. S., Nies, A., and Cooper, T. B. (1980). Relationships of plasma phenelzine levels to platelet MAO inhibition, acetylator phenotype and clinical outcome in depressed outpatients. Clin. Pharmacol. Ther. 27:280.

    Google Scholar 

  • Robinson, D. S., Cooper, T. B., Jindal, S. P., Corcela, J., and Lutz, T. (1985). Metabolism and pharmacokinetics of phenelzine: Lack of evidence for acetylation pathway in humans. J. Clin. Psychopharmacol. 5: 333–337.

    Google Scholar 

  • Schoerlin, M. P., Mayersohn, M., Hoevels, B., Eggers, H., Dellenbach, M., and Pfefen, J. P. (1991). Cimetidine alters the disposition kinetics of the monoamine oxidase-A inhibitor moclobemide. Clin. Pharmacol. Ther. 49:32–38.

    Google Scholar 

  • Sharma, U., Roberts, E. S., and Hollenberg, P. F. (1996). Inactivation of cytochrome P4502B1 by the monoamine oxidase inhibitors R-(−)-deprenyl and clorgyline. Drug Metab. Dispos. 24:669–675.

    Google Scholar 

  • Sherry, R. L., Baker, G. B., and Coutts, R. T. (1990). Effects of low-dose 4-fluorotranylcypromine on rat brain monoamine oxidase and neurotransmitter amines. Biol. Psychiat. 28:539–543.

    Google Scholar 

  • Sherry-McKenna, R. L. (1996). Neurochemical Studies of Tranylcypromine and Ring-Substituted Analogues, Ph.D. thesis, University of Alberta, Edmonton.

    Google Scholar 

  • Sherry-McKenna, R. L., Baker, G. B., McKenna, K. F., Rauw, G. A., and Coutts, R. T. (1992a). Amphetamine is not detected in rat tissues or human urine during treatment with tranylcypromine. Proc. 15th Annu. Meet. Can. Coll. Neuropsychopharmacol., Saskatoon, Sasketchewan.

  • Sherry-McKenna, R. L., Baker, G. B., Mousseau, D. D., Coutts, R. T., and Dewhurst, W. G. (1992b). 4-Methoxytranylcypromine, a monoamine oxidase inhibitor: Effects on biogenic amines in rat brain following chronic administration. Biol. Psychiat. 31:881–888.

    Google Scholar 

  • Shin, H. S. (1997). Metabolism of selegiline in humans—identification, excretion, and stereochemistry of urine metabolites. Drug Metab. Dispos. 25:657–662.

    Google Scholar 

  • Silverstone, T., and Turner, P. (1995). Drug Treatment in Psychiatry, 5th ed., Rutledge, London, pp. 140–189.

    Google Scholar 

  • Skjelbo, E., and Brøsen, K. (1992). Inhibitors of imipramine metabolism by human liver microsomes. Br. J. Clin. Pharmacol. 34:256–261.

    Google Scholar 

  • Smith, D. F. (1980). Tranylcypromine stereoisomers, monoaminergic transmission and behaviour. A review. Pharmacopsychiatry 13:130–136.

    Google Scholar 

  • Spahn-Langguth, H., Hahn, G., Mutschler, E., Möhrke, W., and Langguth, P. (1992). Enantiospecific high-performance liquid chromatographic assay with fluorescence detection for the monoamine oxidase inhibitor tranylcypromine and its applicability in pharmacokinetic studies. J. Chromatogr. 584:229–237.

    Google Scholar 

  • Tipton, K. F., and Spires, I. P. C. (1971). Oxidation of 2-phenylethylhydrazine by monoamine oxidase. Biochem. Pharmacol. 21:268–270.

    Google Scholar 

  • Todd, K. G., and Baker, G. B. (1995). GABA-elevating effects of the antidepressant/antipanic drug phenelzine in brain: Effects of pretreatment with tranylcypromine, (−)-deprenyl and clorgyline. J. Affect. Disord. 35:125–129.

    Google Scholar 

  • Volz, H. P., Faltus, F., Magyar, I., and Möller, H. J. (1994). Brofaromine in treatment-resistence depressed patients—a comparative trial versus tranylcypromine. J. Affect. Disord. 30:209–217.

    Google Scholar 

  • Wacher, V. J., Wong, S., Wong H. T., and Benet, L. Z. (1996). Contribution of CYP3A to selegeline metabolism in rat and human liver microsomes. Proc. North Am. Meet. Int. Soc. Study Xenobiot., San Diego, CA.

  • Waldmeier, P. C., and Stöcklin, K. (1989) The reversible MAO inhibitor, brofaromine, inhibits serotonin in vivo. Eur. J. Pharmacol. 169:197–204.

    Google Scholar 

  • Waldmeier, P. C., Glatt, A., Jaekel, J., and Bittiger, H. (1993). Brofaromine: A monoamine oxidase-A and serotonin uptake inhibitor. Clin. Neuropharmacol. 16:19–24.

    Google Scholar 

  • Waldmeier, P. C., Amrein, R., and Schmid-Burgk, W. (1994). Pharmacology and pharmacokinetics of brofaromine and moclobemide in animals and humans. In Kennedy, S. H. (ed.),Clinical Advances in Monamine Oxidase Inhibitor Therapies, American Psychiatric Press, Washington, DC, pp. 33–59.

    Google Scholar 

  • Weber-Grandke, H., Hahn, G., Mutschler, E., Möhrke, W., and Langguth, P. (1993). The pharmacokinetics of tranylcypromine enantiomers in healthy subjects after oral administration of racemic drug and the single enantiomers. Br. J. Clin. Pharmacol. 36:363–365.

    Google Scholar 

  • Weli, A. M., and Lindeke, B. (1986). Peroxidative N-oxidation and N-dealkylation reactions of pargyline. Xenobiotica 16:281–288.

    Google Scholar 

  • Yoshida, T., Yamada, Y., Yamamoto, T., and Kuroiwa, Y. (1986). Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: Relationship of metabolism to MAO-B inhibiting potency. Xenobiotica 16:129–136.

    Google Scholar 

  • Youdim, M. B. H., Aronson, J. K., Blau, K., Green, A. R., and Grahame-Smith, D. G. (1979). Tranylcypromine concentrations and MAO inhibitory activity and identification of amphetamines in plasma. Psychol. Med. 9:377–382.

    Google Scholar 

  • Yu, P. H., and Tipton, K. F. (1989). Deuterium isotope effect of phenelzine on the inhibition of rat liver mitochondrial oxidase activity. Biochem. Pharmacol. 38:4245–4251.

    Google Scholar 

  • Yu, P. H., Davis, B. A., and Durden, D. A. (1991). Enzymatic N-methylation of phenelzine catalyzed by methyltransferases from adrenal and other tissues. Drug Metab. Dispos. 19:830–834.

    Google Scholar 

  • Zimmer, R., Gieschke, R., Fischbach, R., and Gasic, S. (1990). Interaction studies with moclobemide. Acta Psychiatr. Scand. 360:84–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.B., Urichuk, L.J., McKenna, K.F. et al. Metabolism of Monoamine Oxidase Inhibitors. Cell Mol Neurobiol 19, 411–426 (1999). https://doi.org/10.1023/A:1006901900106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006901900106

Navigation