Skip to main content
Log in

ATPase and ubiquitin-binding proteins of the yeast proteasome

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 26S proteasome is a 2-Megadalton proteolytic complex with over 30 distinct subunits. The 19S particle, a subcomplex of the 26S proteasome, is thought to confer ATP-dependence and ubiquitin-dependence on the proteolytic core particle of the proteasome. Given the complexity of the 19S particle, genetic approaches are likely to play an important role in its analysis. We have initiated biochemical and genetic studies of the 19S particle in Saccharomyces cerevisiae. Here we describe the localization to the proteasome of several ATPases that were previously proposed to be involved in transcription. Independent studies indicate that the mammalian 26S proteasome contains closely related ATPases. We have also found that the multiubiquitin chain binding protein Mcb1, a homolog of the mammalian S5a protein, is a subunit of the yeast proteasome. However, contrary to expectation, MCB1 is not an essential gene in yeast. The mcb1 mutant grows at a nearly wild-type rate, and the breakdown of most ubiquitin-protein conjugates is unaffected in this strain. One substrate, Ub-Proline-βgal, was found to require MCB1 for its breakdown, but it remains unclear whether Mcb1 serves as a ubiquitin receptor in this process. Our data suggest that the recognition of ubiquitin conjugates by the proteasome is a complex process which must involve proteins other than Mcb1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A, Heller H, Haas AL & Rose IA (1980) Proc. Nat. Acad. Sci. USA 77: 1783–1786

    Google Scholar 

  2. Finley D, Ciechanover A & Varshavsky A (1984) Cell 37: 43–55

    Google Scholar 

  3. Ciechanover A, Finley D & Varshavsky A (1984) Cell 37: 57–66

    Google Scholar 

  4. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D & Goldberg A (1994) Cell 78: 761–771

    Google Scholar 

  5. Glotzer M, Murray AW & Kirschner MW (1991) Nature 349: 132–138

    Google Scholar 

  6. Yaglom J, Linskens MHK, Sadis S, Rubin DM, Futcher B & Finley D (1995) Mol. Cell Biol. 15: 731–741

    Google Scholar 

  7. Deshaies, RJ, Chau V & Kirschner MW (1995) EMBO J. 14: 303–312

    Google Scholar 

  8. Schwob E, Bohm T, Mendenhall MD & Nasmyth K (1994) Cell 79: 233–244

    Google Scholar 

  9. Pagano M, Tam SW, Theodoras AM, Beer—Romano P, Del Sal G, Chau V, Yew PR, Draetta GF & Rolfe M (1995) Science 269: 682–685

    Google Scholar 

  10. Maki cg, Huibregtse JM & Howley PM (1996) Cancer Res. 56: 2649–2654

    Google Scholar 

  11. Palombella V, Rando OJ, Goldberg AL & Maniatis T (1994) Cell 78: 773–785

    Google Scholar 

  12. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D & Maniatis T (1995) Genes & Development 9: 1586–1597

    Google Scholar 

  13. Kim TK & Maniatis T (1996) Science 273: 1717–1719

    Google Scholar 

  14. Chen P, Johnson P, Sommer T, Jentsch S & Hochstrasser M (1993) Cell 74: 357–369

    Google Scholar 

  15. Kornitzer D, Raboy B, Kulka RG & Fink GR (1994) EMBO J. 13: 6021–6030

    Google Scholar 

  16. Rubin, DM & Finley D (1995) Curr. Biol. 3: 853–858

    Google Scholar 

  17. Coux O, Tanaka K & Goldberg AL (1996) Annu. Rev. Biochem. 65: 801–847

    Google Scholar 

  18. Löwe J, Stock J, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533–539

    Google Scholar 

  19. Wenzel T & Baumeister W (1995) Nature Struct. Biol. 2: 199–204

    Google Scholar 

  20. DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Chu—Ping M, Afendis SJ, Swaffield JC & Slaughter CA (1994) J. Biol. Chem. 269: 20 878–20 884

    Google Scholar 

  21. Hoffman L, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22 362–22 368

    Google Scholar 

  22. Haracska L & Udvardy A (1995) Eur. J. Biochem. 231: 720–725

    Google Scholar 

  23. Peters J—M, Franke WW, Kleinschmidt JA (1994) J. Biol. Chem. 269: 7709–7718

    Google Scholar 

  24. Hartl FU (1996) Nature 381: 571–579

    Google Scholar 

  25. Dubiel W, Ferrel K, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22 699–22 702

    Google Scholar 

  26. Rubin DM, Coux O, Wefes I, Hengartner C, Young R, Goldberg A & Finley D (1996) Nature 379: 655–657

    Google Scholar 

  27. Dubiel W, Ferrel K. & Rechsteiner M. (1995) Mol. Biol. Rep. 21: 27–34

    Google Scholar 

  28. Swaffield JC, Bromberg JF & Johnston SA (1992) Nature 357: 698–700

    Google Scholar 

  29. Swaffield JC, Melcher K & Johnston SA (1995) Nature 374: 88–91

    Google Scholar 

  30. Kim Y—J, Björklund S, Li Y, Sayre MH & Kornberg RD (1994) Cell 77: 599–608

    Google Scholar 

  31. Lee JW, Ryan F, Swaffield JC, Johnston SA & Moore DD (1995) Nature 374: 91–94

    Google Scholar 

  32. Shibuya H, Irie K, Ninomiya—Tsuji J, Goebl M, Taniguchi T & Matsumoto K (1992) Nature 357: 700–702

    Google Scholar 

  33. Nelbock P, Dillon PJ, Perkins A & Rosen CA (1990) Science 248: 1650–1653

    Google Scholar 

  34. Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR & Rosen CA (1993) Proc. Nat. Acad. Sci. USA 90: 138–142

    Google Scholar 

  35. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362

    Google Scholar 

  36. Koleske AJ & Young RA (1995) Trends Biochem. Sci. 20: 113–116

    Google Scholar 

  37. Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C & Wolf DH (1991) EMBO J. 10: 555–562

    Google Scholar 

  38. Akiyama K, Yakota K, Kagawa S, Shimbara N, DeMartino GN, Slaughter CA, Noda C & Tanaka K (1995) FEBS Lett. 363: 151–156

    Google Scholar 

  39. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061

    Google Scholar 

  40. van Nocker S, Deveraux Q, Rechsteiner M & Vierstra R (1996) Proc. Nat. Acad. Sci. USA 93: 856–860

    Google Scholar 

  41. van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell Biol. 16: 6020–6028

    Google Scholar 

  42. Ferrel K, Deveraux Q, van Nocker S & Rechsteiner M (1996) FEBS Lett. 381: 143–148

    Google Scholar 

  43. Deveraux Q, van Nocker S, Mahaffey D, Vierstra R & Rechsteiner M (1995) J. Biol. Chem. 270: 29 660–29 663

    Google Scholar 

  44. Finley D, Sadis S, Monia BP, Boucher P, Ecker DJ, Crooke ST & Chau V (1994) Mol. Cell Biol. 14: 5501–5509

    Google Scholar 

  45. Bachmair A, Finley D & Varshavsky A (1986) Science 234: 179–186

    Google Scholar 

  46. Jentsch S, McGrath JP & Varshavsky A (1987) Nature 329: 131–134

    Google Scholar 

  47. Johnson ES, Ma PCM, Ota IM & Varshavsky A (1995) J. Biol. Chem. 270: 17 442–17 456

    Google Scholar 

  48. Beal R, Deveraux Q, Xia G, Rechsteiner M, Pickart C (1996) Proc. Nat. Acad. Sci. USA 93: 861–866

    Google Scholar 

  49. Wilkinson KD, Tashayev VL, O'Conner LB, Larsen CN, Kasparek E & Pickart CM(1996) Biochemistry 34: 14 535–14 546

    Google Scholar 

  50. Reiss Y, Heller H & Hershko A (1989) J. Biol. Chem. 264: 10 378–10 383

    Google Scholar 

  51. Baboshina OV & Haas A (1996) J. Biol. Chem. 271: 2823–2831

    Google Scholar 

  52. Spence J, Sadis S, Haas AL & Finley D (1995) Mol. Cell Biol. 15: 1265–1273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, D.M., van Nocker, S., Glickman, M. et al. ATPase and ubiquitin-binding proteins of the yeast proteasome. Mol Biol Rep 24, 17–26 (1997). https://doi.org/10.1023/A:1006844305067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006844305067

Navigation