Skip to main content
Log in

Evolution of genes and taxa: a primer

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The rapidly growing fields of molecular evolution and systematics have much to offer to molecular biology, but like any field have their own repertoire of terms and concepts. Homology, for example, is a central theme in evolutionary biology whose definition is complex and often controversial. Homology extends to multigene families, where the distinction between orthology and paralogy is key. Nucleotide sequence alignment is also a homology issue, and is a key stage in any evolutionary analysis of sequence data. Models based on our understanding of the processes of nucleotide substitution are used both in the estimation of the number of evolutionary changes between aligned sequences and in phylogeny reconstruction from sequence data. The three common methods of phylogeny reconstruction – parsimony, distance and maximum likelihood – differ in their use of these models. All three face similar problems in finding optimal – and reliable – solutions among the vast number of possible trees. Moreover, even optimal trees for a given gene may not reflect the relationships of the organisms from which the gene was sampled. Knowledge of how genes evolve and at what rate is critical for understanding gene function across species or within gene families. The Neutral Theory of Molecular Evolution serves as the null model of molecular evolution and plays a central role in data analysis. Three areas in which the Neutral Theory plays a vital role are: interpreting ratios of nonsynonymous to synonymous nucleotide substitutions, assessing the reliability of molecular clocks, and providing a foundation for molecular population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Sujatha Thankeswaran Parvathy, Varatharajalu Udayasuriyan & Vijaipal Bhadana

References

  1. Adachi J, Cao Y, Hasegawa M: Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level - rapid evolution in warm-blooded vertebrates. J Mol Evol 36: 270–281 (1993).

    Google Scholar 

  2. Allison L, Wallace CS: The posterior probability distribution of alignments and its application to parameter estimation of evolutionary trees and to optimization of multiple alignments. J Mol Evol 39: 418–430 (1994).

    Google Scholar 

  3. Appels R, Honeycutt RL: rDNA: evolution over a billion years. In: Dutta SK (ed.), DNA Systematics, vol. 2, pp. 81–135. CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  4. Arnheim N: Concerted evolution of multigene families. In: Nei M, Koehn RK (eds), Evolution of Genes and Proteins, pp. 38–61. Sinauer Associates, Boston (1983).

    Google Scholar 

  5. Begun DJ, Aquadro CF: Levels of naturally occurring DNA polymorphism correlate with recombination rates in Drosophila melanogaster. Nature 356: 519–520 (1992).

    Google Scholar 

  6. Bennetzen JL, Kellogg EA: Do plants have a one-way ticket to genomic obesity? Plant Cell 9: 1509–1514 (1997).

    Google Scholar 

  7. Bousquet J, Strauss SH, Doerksen AH, Price RA: Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89: 7844–7848 (1992).

    Google Scholar 

  8. Bremer K: The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803 (1988).

    Google Scholar 

  9. Bremer K: Branch support and tree stability. Cladistics 10:295–304 (1994).

    Google Scholar 

  10. Carpenter JM: Successive weighting, reliability, evidence. Cladistics 4: 291–296 (1994).

    Google Scholar 

  11. Charlesworth D, Charlesworth B, Morgan MT: The pattern of neutral molecular variation under the background selection model. Genetics 141: 1619–1632 (1995).

    Google Scholar 

  12. Clark AG, Kao T-H: Excess nonsynonymous substitution at shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc Natl Acad Sci USA 88: 9823–9827 (1991).

    Google Scholar 

  13. Clegg MT, Cummings MP, Durbin ML: The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94: 7791–7798 (1997).

    Google Scholar 

  14. Cummings MP, Clegg MT: Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barely (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. Proc Natl Acad Sci USA 95: 5637–5642 (1998).

    Google Scholar 

  15. Cunningham CW, Zhu H, Hillis DM: Best-fit maximumlikelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52: 978–987 (1998).

    Google Scholar 

  16. Doebley J: Molecular evidence and the evolution of maize. Econ Bot 44: 6–27 (1990).

    Google Scholar 

  17. Doebley J, Stec A, Wendel J, Edwards M: Genetic and morphological analysis of a maize-teosinte F2 population - implications for the origin of maize. Proc Natl Acad Sci USA 87: 9888–9892 (1990).

    Google Scholar 

  18. Doebley J, Stec A, Gustus C: Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333–346 (1995).

    Google Scholar 

  19. Doebley J, Stec A, Hubbard L.: The evolution of apical dominance in maize. Nature 386: 485–488 (1997).

    Google Scholar 

  20. Doyle JJ: Trees within trees: genes and species, molecules and morphology. Syst Biol 46: 537–553 (1997).

    Google Scholar 

  21. Doyle JJ, Davis JI: Homology in molecular phylogenetics: a parsimony perspective. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants, 2nd ed., pp. 101–131. Kluwer Academic Publishers, Dordrecht, Netherlands (1998).

    Google Scholar 

  22. Dvorak J, Luo M-C, Yang Z-L: Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148: 423–434 (1998).

    Google Scholar 

  23. Easteal S, Collet C, Betty D: The Mammalian Molecular Clock. R.G. Landes, Austin, TX (1995).

    Google Scholar 

  24. Eddy SR: Hidden Markov models. Curr Opin Struct Biol 6: 361–365 (1996).

    Google Scholar 

  25. Endo T, Ikeo K, Gojobori T: Large-scale search for genes on which positive selection may operate. Mol Biol Evol 13: 685–690 (1996).

    Google Scholar 

  26. Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut B.S.: Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95: 4441–4446 (1998).

    Google Scholar 

  27. Farris JS: A successive approximations approach to character weighting. Syst Zool 18: 374–385 (1969).

    Google Scholar 

  28. Farris JS: The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds), Advances in Cladistics 2, pp. 7-36. Columbia University Press, New York (1983).

    Google Scholar 

  29. Farris JS, Albert VA, Källersjö M, DL, Kluge AG: Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99–124 (1996).

    Google Scholar 

  30. Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27: 401–410 (1978).

    Google Scholar 

  31. Felsenstein J: The number of evolutionary trees. Syst Zool 27: 27–33 (1978).

    Google Scholar 

  32. Felsenstein J: Confidence limits in phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).

    Google Scholar 

  33. Felsenstein J: PHYLIP Manual. University Herbarium, University of California, Berkeley, CA (1990).

    Google Scholar 

  34. Fitch WM: Distinguishing homologous from analogous proteins. Syst Zool 19: 99–113 (1970).

    Google Scholar 

  35. Fu Y-X, Li W-H: Statistical tests of neutrality of mutations. Genetics 133: 693–709 (1993).

    Google Scholar 

  36. Gaut BS: Molecular clocks and nucleotide substitution rates in higher plants. Evol Biol 30: 93–120 (1997).

    Google Scholar 

  37. Gaut BS, Lewis PO: Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol 12: 152–162 (1995).

    Google Scholar 

  38. Gaut BS, Muse SV, Clark WD, Clegg MT: 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35: 292–303 (1992).

    Google Scholar 

  39. Gaut BS, Morton BR, McCaig BM, Clegg MT: Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93: 10274–10279 (1996).

    Google Scholar 

  40. Gaut BS, Clark LG, Wendel JF, Muse SV: Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). Mol Biol Evol 14: 769–777 (1997).

    Google Scholar 

  41. Gillespie JH: On Ohta's hypothesis: most amino acid substitutions are deleterious. J Mol Evol 40: 64–69 (1995).

    Google Scholar 

  42. Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ: Evolution of the vacuolar HC ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86: 6661–6665 (1989).

    Google Scholar 

  43. Goldman N, Yang ZH: Codon-based model of nucleotide substitution for protein coding DNA sequences. Mol Biol Evol 11: 725–736 (1994).

    Google Scholar 

  44. Goloboff PA: Estimating character weights during tree search. Cladistics 9: 83–91 (1993).

    Google Scholar 

  45. Goloboff PA: Tree searches under Sankoff parsimony. Cladistics 14: 229–237 (1998).

    Google Scholar 

  46. Gu X, Li W-H: Bias corrected paralinear and LogDet distances and tests of molecular clocks and phylogenies under nonstationary nucleotide frequencies. Mol Biol Evol 13: 1375–1383 (1996).

    Google Scholar 

  47. Guttman DS, Dykhuizen DE: Detecting sweeps in naturally occurring Escherichia coli. Genetics 138: 993–1003 (1994).

    Google Scholar 

  48. Hanson MA, Gaut BS, Stec AO, Fuerstenberg SI, Goodman MM, Coe EH, Doebley J: Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143: 1395–1407 (1996).

    Google Scholar 

  49. Hein J: A tree reconstruction method that is economical in the number of pairwise comparisons used. Mol Biol Evol 6: 669–684 (1989).

    Google Scholar 

  50. Hendy MD, Penny D: Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 59: 277–290 (1982).

    Google Scholar 

  51. Hillis DM: Homology in molecular biology. In: Hall BK (ed), Homology: The Hierarchical Basis of Comparative Biology, pp. 339–368. Academic Press, New York (1994).

    Google Scholar 

  52. Hillis DM, Bull JJ: An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42: 182–192 (1993).

    Google Scholar 

  53. Hilton H, Gaut BS: Speciation and domestication in maize and its wild relatives: evidence from the Globulin-1 gene. Genetics 150: 863–872 (1998).

    Google Scholar 

  54. Hilton H, Kliman RM, Hey J: Using hitchhiking genes to study adaptation and divergence during speciation within the Drosophila melanogaster species complex. Evolution 48: 1900–1913 (1994).

    Google Scholar 

  55. Hudson RR: Gene genealogies and the coalescent process. Oxford Surv Evol Biol 7: 1–44 (1991).

    Google Scholar 

  56. Hudson RR, Kreitman M, Aguade M: A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159 (1987).

    Google Scholar 

  57. Huelsenbeck JP: Performance of phylogenetic methods in simulation. Syst Biol 44: 17–48 (1995).

    Google Scholar 

  58. Huelsenbeck JP, Crandall KA: Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol 28: 437–466 (1997).

    Google Scholar 

  59. Huelsenbeck JP, Hillis DM: Success of phylogenetic methods in the four-taxon case. Syst Biol 42: 247–264 (1993).

    Google Scholar 

  60. Huelsenbeck JP, Rannala B: Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276: 227–232 (1997).

    Google Scholar 

  61. Hughes AL, Nei M: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167–170 (1988).

    Google Scholar 

  62. Iltis HH: From teosinte to maize: the catastrophic sexual transmutation. Science 222: 886–894 (1983).

    Google Scholar 

  63. Innan H, Tajima F, Terauchi R, Miyashita NT: Intragenic recombination in the adh locus of the wild plant Arabidopsis thaliana. Genetics 143: 1761–1770 (1996).

    Google Scholar 

  64. Ioerger TR, Clark AG, Kao T-H: Polymorphism at the selfincompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci USA 87: 9732–9735 (1990).

    Google Scholar 

  65. Johnson LA, Soltis DE: Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Miss Bot Gard 82: 149–175 (1995).

    Google Scholar 

  66. Jukes TH, Cantor CR: Evolution of protein molecules. In: Munro HN (ed.), Mammalian Protein Metabolism, pp. 21–32. Academic Press, New York (1969).

    Google Scholar 

  67. Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg O, Bremer K: Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Syst Evol 213: 259–287 (1998).

    Google Scholar 

  68. Kimura M: Evolutionary rate at the molecular level. Nature 217: 624–626 (1968).

    Google Scholar 

  69. Kimura M: Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 276: 275–276 (1977).

    Google Scholar 

  70. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 (1980).

    Google Scholar 

  71. Kimura M: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK (1983).

    Google Scholar 

  72. Kimura M, Ohta T: On some principles governing molecular evolution. Proc Natl Acad Sci USA 71: 2848–2852 (1974).

    Google Scholar 

  73. King JL, Jukes TH: Non-darwinian evolution: random fixation of selectively neutral mutations. Science 164: 788–798 (1969).

    Google Scholar 

  74. Kingman JFC: On the genealogy of large populations. J Appl Prob 19A: 27–43 (1982).

    Google Scholar 

  75. Kishino H, Hasegawa M: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in the Hominoidea. J Mol Evol 29: 170–179 (1989).

    Google Scholar 

  76. Kjer KM: Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phyl Evol 4: 314–330 (1995).

    Google Scholar 

  77. Kreitman M, Hudson RR: Inferring the evolutionary histories of Adh and the Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics 127: 565–582 (1991).

    Google Scholar 

  78. Kumar S, Tamura K, Nei M: MEGA: molecular evolutionary genetic analysis, version 1.0. Penn State University, University Park, PA 16802, USA (1993).

    Google Scholar 

  79. Lewis PO: Maximum likelihood as an alternative to parsimony for inferring phylogeny using nucleotide sequence data. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 132–163. Kluwer Academic Publishers, Boston (1998).

    Google Scholar 

  80. Li P, Bousquet J: Relative-rate test for nucleotide substitutions between two lineages. Mol Biol Evol 9: 1185–1189 (1992).

    Google Scholar 

  81. Li W-H: Molecular Evolution. Sinauer Associates, Sunderland, MA (1997).

    Google Scholar 

  82. Li W-H, Tanimura M, Sharp P: An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25: 330–342 (1987).

    Google Scholar 

  83. Li W-H, Ellsworth DL, Krushkal J, Chang BH-J, Emmet DH: Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phyl Evol 5: 182–187 (1996).

    Google Scholar 

  84. Liu F, Zhang L, Charlesworth D: Genetic diversity in a Leavenworthia population with different inbreeding levels. Proc R Soc Lond B 265: 293–301 (1998).

    Google Scholar 

  85. Maddison DR: The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40: 315–328 (1991).

    Google Scholar 

  86. Margoliash E: Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA 50: 672–679 (1963).

    Google Scholar 

  87. Martin AP, Palumbi SR: Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90: 4087–4091 (1993).

    Google Scholar 

  88. Martin AP, Naylor GJP, Palumbi SR: Rate of mitochondrial DNA evolution is slow in sharks compared to mammals. Nature 357: 153–155 (1992).

    Google Scholar 

  89. Martin W, Gierl A, Saedler H: Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48 (1989).

    Google Scholar 

  90. Mathews S, Sharrock RA: The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of loci found in dicot angiosperms. Mol Biol Evol 13: 1141–1150 (1996).

    Google Scholar 

  91. Mayr E: Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds), Evolution as a Process, pp. 157–180. George, Allen and Unwin, London (1954).

    Google Scholar 

  92. Meagher RB, Berry-Lowe S, Rice K: Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics 123: 845–863 (1989).

    Google Scholar 

  93. Messier W, Stewart C-B: Episodic adaptive evolution of primate lysozymes. Nature 385: 151–153 (1997).

    Google Scholar 

  94. Moniz de Sa M, Drouin G: Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13: 1198–1212 (1996).

    Google Scholar 

  95. Muse SV, Gaut BS: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11: 715–724 (1994).

    Google Scholar 

  96. Muse SV, Gaut BS: Comparing patterns of nucleotide substitution patterns among chloroplast loci using the relative ratio test. Genetics 146: 393–399 (1997).

    Google Scholar 

  97. Muse SV, Weir BS: Testing for equality of evolutionary rates. Genetics 132: 269–276 (1992).

    Google Scholar 

  98. Myers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW: Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10: 1833–1846 (1998).

    Google Scholar 

  99. Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequences of two proteins. J Mol Biol 48: 443–453 (1970).

    Google Scholar 

  100. Nei M: Molecular Evolutionary Genetics. Columbia University Press, New York (1987).

    Google Scholar 

  101. Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426 (1986).

    Google Scholar 

  102. Neigel JE, Avise JC: Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds), Evolutionary Processes and Theory, pp. 515–534. Academic Press, New York (1986).

    Google Scholar 

  103. Nielsen R, Yang ZH: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936 (1998).

    Google Scholar 

  104. Ohta T, Kimura M: On the constancy of the evolutionary rate of cistrons. J Mol Evol 1: 18–25 (1971).

    Google Scholar 

  105. Olmstead R, Reeves PA, Yen AC: Patterns of sequence evolution and implications for parsimony analysis of chloroplast DNA. In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 164–187. Kluwer Academic Press, Boston (1998).

    Google Scholar 

  106. Page RDM: GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14: 819–820 (1998).

    Google Scholar 

  107. Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BBH, Jones JDG: Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821–832 (1997).

    Google Scholar 

  108. Purugganan MD: The molecular evolution of development. BioEssays 20: 700–711 (1998).

    Google Scholar 

  109. Purugganan MD, Suddith JI: Molecular population genetics of floral homeotic loci: departures from the equilibrium neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics 151: 839–848 (1998).

    Google Scholar 

  110. Purugganan MD, Suddith JI: Molecular population genetics of the Abrabidopsis CAULIFLOWER regulatory gene: non-neutral evolution and wild variation in floral homoeotic function. Proc Natl Acad Sci USA 95: 8130–8134 (1999).

    Google Scholar 

  111. Rausher MD, Miller RE, Tiffin P: Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol 16: 266–274 (1999).

    Google Scholar 

  112. Reeck GR, de Haën C, Teller DC, Doolittle RF, Fitch WM, Dickerson RE, Chambon P, McLachlan AD, Margoliash E et al.: 'Homology' in proteins and nucleic acids: a terminology muddle and a way out of it. Cell 50: 667 (1987).

    Google Scholar 

  113. Richman AD, Uyenoyama MK, Kohn JR: Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science 273: 1212–1216 (1996).

    Google Scholar 

  114. Rieseberg LH, Soltis DE: Phylogenetic conseequences of cytoplasmic gene flow in plants. Evol Trends Plants 5: 65–84 (1991).

    Google Scholar 

  115. Rzhetsky A, Nei M: A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967 (1992).

    Google Scholar 

  116. Rzhetsky A, Nei M: Theoretical foundation of the minimumevolution method of phylogenetic inference. Mol Biol Evol 10: 1073–1095 (1993).

    Google Scholar 

  117. Rzhetsky A, Kumar S, Nei M: Four-cluster analysis: a simple method to test phylogenetic hypotheses. Mol Biol Evol 12: 163–167 (1995).

    Google Scholar 

  118. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 (1987).

    Google Scholar 

  119. Sanderson MJ: A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14: 1218–1231 (1997).

    Google Scholar 

  120. Sanderson MJ, Doyle JJ: Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy and confidence. Syst Biol 41: 4–17 (1992).

    Google Scholar 

  121. SanMiguel P, Tikhonov A, Jin Y-K, Melake-Berhan A, Springer PS, Edwards KJ, Avramova Z, Bennetzen JL:. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768 (1996).

    Google Scholar 

  122. SanMiguel PJ, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL: The paleontology of intergene retrotransposons of maize: dating the strata. Nature Genetics 20: 43–45 (1998).

    Google Scholar 

  123. Sarich VM, Wilson AC: Immunological time-scale for hominid evolution. Science 150: 1200–1203 (1967).

    Google Scholar 

  124. Schaeffer SW, Aquadro CF, Anderson WW: Restriction-map variation in the alcohol dehydrogenase region of Drosophila pseudoobscura. Mol Biol Evol 4: 254–265 (1987).

    Google Scholar 

  125. Siddal ME: Success of parsimony in the four-taxon case: long-branch repulsion by likelihood in the Farris Zone. Cladistics 14: 209–220 (1998).

    Google Scholar 

  126. Sitnikova T, Rzhetsky A, Nei M: Interior-branched and bootstrap tests of phylogenetic trees. Mol Biol Evol 12: 319–333 (1995).

    Google Scholar 

  127. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF: The tortoise and the hare: choosing between noncoding plastome and nuclear adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85: 1301–1315 (1998).

    Google Scholar 

  128. Small RL, Ryburn JA, Wendel JF: Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol 16: 491–501 (1998).

    Google Scholar 

  129. Springer PS, Edwards KJ, Bennetzen JL: DNA class organization on maize adh1 yeast artificial chromosomes. Proc Natl Acad Sci USA 91: 863–867 (1994).

    Google Scholar 

  130. Steel MA, Lockhart PJ, Penny D: Confidence in evolutionary trees from biological sequence data. Nature 364: 440–442 (1993).

    Google Scholar 

  131. Stephan W, Langley CH: DNA polymorphism in Lycopersicon and crossing-over per physical length. Genetics 150: 1585–1593 (1998).

    Google Scholar 

  132. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM: Phylogenetic Inference. In: Hillis DM, Moritz C, Mable BK (eds), Molecular Systematics, pp. 407–514. Sinauer Associates, Sunderland, MA (1996).

    Google Scholar 

  133. Tajima F: The effect of change in population size change on DNA polymorphism. Genetics 123: 597–601 (1989).

    Google Scholar 

  134. Tajima F: Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135: 599–607 (1993).

    Google Scholar 

  135. Takahata N: Evolutionary genetics of human paleopopulations. In: Takahata N, Clark AG (eds), Mechanisms of Molecular Evolution, pp. 1–21. Sinauer Associates, Sunderland, MA (1993).

    Google Scholar 

  136. Takezaki, Rzhetsky A, Nei M: Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12: 823–833 (1995).

    Google Scholar 

  137. Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 (1993).

    Google Scholar 

  138. Theissen G, Kim JT, Saedler H: Classification and phylogeny of MADs-box multigene family suggest defined roles of MADs-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43: 484–516 (1996).

    Google Scholar 

  139. Thorne JL, Kishino H, Felsenstein J: Inching toward reality: an improved likelihood model of sequence evolution. J Mol Evol 34: 3–16 (1992).

    Google Scholar 

  140. Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15: 1647–1657 (1998).

    Google Scholar 

  141. Vingron M, Waterman S: Sequence alignment and penalty choice: review of concepts, case studies and implications. J Mol Biol 235: 1–12 (1994).

    Google Scholar 

  142. Wakeley J: Distinguishing migration from isolation using the variance of pairwise differences. Theor Pop Biol 49: 369–386 (1996).

    Google Scholar 

  143. Wang G-L, Ruan D-L, Song W-Y, Sideris S, Chen L, Pi L-Y, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen C, Ronald PC: Xa21D encodes a receptor-like molecule with a leucine rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10: 765–779 (1998).

    Google Scholar 

  144. Wang RL, Stec A, Hey J, Lukens L, Doebley J: The limits of selection during maize domestication. Nature 398: 236–239 (1999).

    Google Scholar 

  145. Waters ER: The molecular evolution of the small heat-shock proteins in plants. Genetics 141: 785–795 (1995).

    Google Scholar 

  146. Wendel JF, Doyle JJ: Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 265–296. Kluwer Academic Publishers, Boston (1998).

    Google Scholar 

  147. Wheeler WC, Gladstein DS: MALIGN: a multiple sequence alignment program. J Hered 85: 417–418 (1994).

    Google Scholar 

  148. Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86: 6201–6205 (1989).

    Google Scholar 

  149. Wu C-I, Li W-H: Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82: 1741–1745 (1985).

    Google Scholar 

  150. Yang Z: Maximum-likelihood models for combined analyses of multiple sequence data. J Mol Evol 42: 587–596 (1996).

    Google Scholar 

  151. Yang Z, Goldman N, Friday A: Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11: 316–324 (1994).

    Google Scholar 

  152. Zhang Z, Kumar S, Nei M: Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Mol Biol Evol 14: 1335–1338 (1998).

    Google Scholar 

  153. Zharkikh A: Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39: 315–329 (1994).

    Google Scholar 

  154. Zharkikh A, Li W-H: Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. 1.4. Taxa with a molecular clock. Mol Biol Evol 9: 1119–1147 (1992).

    Google Scholar 

  155. Zharkikh A, Li W-H.: Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. 2.4. Taxa without a molecular clock. J Mol Evol 35: 356–366 (1992).

    Google Scholar 

  156. Zuckerkandl E, Pauling L: Molecular disease, evolution, and genetic heterogeneity. In: Bryson B, Vogel HJ (eds), Horizons in Biochemistry, pp. 189–225. Academic Press, New York (1962).

    Google Scholar 

  157. Zuckerkandl E, Pauling L: Evolutionary divergence and convergence in proteins. In: Bryson B, Vogel HJ (eds), Evolving Genes and Proteins, pp. 97–116. Academic Press, New York (1965).

    Google Scholar 

  158. Zurawski G, Clegg MT: Evolution of higher-plant chloroplast encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, J.J., Gaut, B.S. Evolution of genes and taxa: a primer. Plant Mol Biol 42, 1–23 (2000). https://doi.org/10.1023/A:1006349518932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006349518932

Navigation