Skip to main content
Log in

Determination of the Tropospheric Hydroxyl Radical by Liquidphase Scrubbing and HPLC: Preliminary Results

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A preliminary study was carried out toexamine the feasibility of measuring tropospherichydroxyl radicals (OH) by liquidphase scrubbing andhigh performance liquid chromatography (HPLC). Thepotential advantages of this approach are itssimplicity, portability, and low expense. Thesampling system employs glass bubblers to trapatmospheric OH into a buffered solution of salicylicacid (o-hydroxybenzoic acid, OHBA). Rapidreaction of OH with OHBA produces a stable fluorescentproduct, 2,5-dihydroxybenzoic acid (2,5-DHBA), whichis determined by reverse-phase HPLC and fluorescencedetection. Our preliminary field results indicatethat this method is most suitable for OH measurementsin clean tropospheric air, where interferences fromother atmospheric species appear to be negligible orminor relative to polluted air. In clean air, thesampling period is about 45–90 minutes, which yieldsa detection limit of approximately 3–6 ×105 radicalscm-3. During an OHintercomparison experiment at the Caribou samplingsite in Colorado, our liquidphase scrubber method wascompared with the ion-assisted mass spectrometry (MS)method. Our results were within the same range asthose of the ion-assisted MS method (1–5 ×106 radicals cm-3) within our precision atthat time (about ±30–50%). Preliminary testsin Pullman, WA indicated that the method might alsofunction in moderately polluted air by acidifying thescrubbing solution or by adding a scavenger tosuppress interferences. In Pullman, mid-day OHconcentrations were usually in the range of 2–20 ×106 radicals cm-3. Nighttime OHconcentrations were always low, either at or slightlyabove the detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R., Aschmann, S. M., Arey, J., and Shorees, B., 1992: Formation of OH radicals in gas phase reactions of O3 with a series of terpenes, J. Geophys. Res. 97, 6065-6073.

    Google Scholar 

  • Atkinson, R., Tuazon, E. C., and Aschmann, S. M., 1995: Products of the gas phase reactions of O3 with alkenes, Environ. Sci. Technol. 29, 1860-1866.

    Google Scholar 

  • Bey, I., Aumont, B., and Toupance, G., 1997: The nighttime production of OH radicals in the continental troposphere, Geophys. Res. Lett. 24, 1067-1070.

    Google Scholar 

  • Brauers, T., Aschmutat, U., Brandenburger, U., Dorn, H.-P., Hausmann, M., Heß ling, M., Hofzumahaus, A., Holland, F., Plass-Dulmer, C., and Ehhalt, D. H., 1996: Intercomparison of tropospheric OH radical measurements by multiple folded long-path laser absorption and laser induced fluorescence, Geophys. Res. Lett. 23, 2545-2548.

    Google Scholar 

  • Brimblecombe, P., 1996: Air Composition and Chemistry, Cambridge University Press, New York.

    Google Scholar 

  • Campbell, M. J., Hall, B. D., Sheppard, J. C., Utlay, P. L., O'Brien, R. J., Hard, T. M., and George, L. A., 1995: Intercomparison of local hydroxyl measurements by radiocarbon and FAGE techniques, J. Atmos. Sci. 52, 3421-3427.

    Google Scholar 

  • Chen, X., 1995: Determination of atmospheric hydroxyl radical by liquid phase scrubbing and high performance liquid chromatography, PhD Thesis, Washington State University, Pullman.

  • Dasgupta, P. K., 1993: Automated measurement of atmospheric trace gases, in L. Newman (ed.), Measurement Challenges in Atmospheric Chemistry, ACS, Washington, DC, pp. 41-90.

    Google Scholar 

  • Dorn, H.-P., Brandenburger, U., Brauers, T., Hausmann, M., and Ehhalt, D. H., 1996: In situ detection of tropospheric OH radicals by folded long-path laser absorption. Results from the POPCORN field campaign in August, 1994, Geophys. Res. Lett. 23, 2537-2540.

    Google Scholar 

  • Eisele, F. L. and Bradshaw, J. D., 1993: The elusive hydroxyl radical: measuring OH in the atmosphere, Anal. Chem. 65, 927A-939A.

    Google Scholar 

  • Eisele, L. F., Mount, G. H., Fehsenfeld, F. C., Harder, J., Marovich, E., Parrish, J. R., Trainer, M., and Tanner, D., 1994: Intercomparison of tropospheric OH and ancillary trace gas measurements at Fritz Peak Observatory, Colorado, J. Geophys. Res. 99, 18605-18626.

    Google Scholar 

  • Eisele, F. L. and Tanner, D. J., 1991: Ion-assisted tropospheric OH measurements, J. Geophys. Res. 96, 9295-9308.

    Google Scholar 

  • Felton, C. C., Sheppard, J. C., and Campbell, M. J., 1990: The radiochemical hydroxyl radical measurement method, Environ. Sci. Technol. 24, 1841-1847.

    Google Scholar 

  • Finlayson-Pitts, B. J., Hernandez, S. K., and Berko, H. N., 1993: A new dark source of the gaseous hydroxyl radical for relative rate measurement, J. Phys. Chem. 97, 1172-1177.

    Google Scholar 

  • Graedel, T. E. and Weschler, C. J., 1981: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space. Phys. 19, 505-539.

    Google Scholar 

  • Hard, T. M., O'Brien, R. J., Chan, C. Y., and Mehrabzadeh, A. A., 1984: Tropospheric free radical determination by fluorescence assay with gas expansion, Environ. Sci. Technol. 18, 768-777.

    Google Scholar 

  • Hofzumahaus, A., Aschmutat, U., Hebling, M., Holland, F., and Ehhalt, D. H., 1996: The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN field campaign, Geophys. Res. Lett. 23, 2541-2544.

    Google Scholar 

  • Jonson, J. E. and Isaksen, I. S. A., 1993: Tropospheric ozone chemistry: the impact of cloud chemistry, J. Atmos. Chem. 16, 99-122.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1990: Influences of cloud photochemical processes on tropospheric ozone, Nature 343, 227-233.

    Google Scholar 

  • Levy, H., 1971: Normal atmosphere: large radical and formaldehyde concentrations predicted, Science 173, 141-143.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981: Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 7210-7254.

    Google Scholar 

  • Mather, J. H., Stevens, P. S., and Brune, W. H., 1997: OH and HO2 measurements using laser-induced fluorescence, J. Geophys. Res. 102, 6427-6436.

    Google Scholar 

  • Meyn, L. A., 1982: Turbulent diffusion in a flow tube reactor with wall reactions, MSc Thesis, Washington State University, Pullman.

  • Mount, G. H., 1992: The measurement of tropospheric OH by long path absorption, J. Geophys. Res. 97, 2427-2444.

    Google Scholar 

  • Mount, G. H. and Eisele, F. L., 1992: An intercomparison of tropospheric OH measurements at Fritz peak observatory, Colorado, Science 256, 1187-1190.

    Google Scholar 

  • Mount, G. H., Eisele, F. L., Tanner, D. J., Brault, J. W., Johnston, P. V., Harder, J. W., William, E. J., Fried, A., and Shetter, R., 1997: An intercomparison of spectroscopic laser long-path and in situ measurements for hydroxyl concentrations during the Tropospheric OH Photochemistry Experiment, fall 1993, J. Geophys. Res. 102, 6437-6455.

    Google Scholar 

  • Mount, G. H. and Williams, E. J., 1997: An overview of the tropospheric OH photochemistry experiment Fritz Peak/Idaho Hill, Colorado, fall 1993, J. Geophys. Res. 102, 6171-6186.

    Google Scholar 

  • Murphy, D. M. and Fahey, D. W., 1987: Mathematical treatment of the wall loss of a trace species in denuder and catalytic converter tubes, Anal. Chem. 59, 2753-2759.

    Google Scholar 

  • Olin, J. G. and Korpl, D. M., 1988: Achieving accurate gas flowmeter calibration, I&CS.

  • Pearson, K., 1901: On lines and planes of closest fit to systems of points in space, Phil. Mag. 2, 559-572.

    Google Scholar 

  • Paulson, S., Flagan, R. C., and Seinfeld, J. H., 1992: Atmospheric photooxidation of isoprene, part II: the ozone-isoprene reaction, Int. J. Chem. Kinet. 24, 103-125.

    Google Scholar 

  • Stevens, P. S., Mather, J. H., and Brune, W. H,. 1994: Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure, J. Geophys. Res. 99, 3543-3557.

    Google Scholar 

  • Tanner, D. J. and Eisele, F. L., 1995: Present OH measurement limits and associated uncertainties, J. Geophys. Res. 100, 2883-2892.

    Google Scholar 

  • Thompson, A., 1994: Aspects of modeling the tropospheric hydroxyl radical concentration, Israel J. Chem. 34, 277-288.

    Google Scholar 

  • Thompson, A. M. and Zafiriou, O. C., 1983: Air-sea fluxes of transient atmospheric species, J. Geophys. Res. 88, 6696-6708.

    Google Scholar 

  • Weinstock, B., 1969: Carbon monoxide: residence time in the atmosphere, Science 166, 224.

    Google Scholar 

  • Wennberg, P. O., Cohen, R. C., Hazen, N. L., Lapson, L. B., Allen, N. T., Hanisco, T. F., Oliver, J. F., Lanham, N. W., Demusz, J. N., and Anderson, J. G., 1994: Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroperoxyl radicals, Rev. Sci. Instrument. 65, 1858-1876.

    Google Scholar 

  • Yoshimura, Y., Otsuka, K., Uchiyama, K., Tanaka, H., Tamura, K., Ohsawa, K., and Imaeda, K., 1989: Detection of hydroxyl radicals with salicylic acid, Anal. Sci. 5, 161-164.

    Google Scholar 

  • Zhou, X. and Mopper, K., 1990: Determination of photochemically produced hydroxyl radicals in seawater and freshwater, Mar. Chem. 30, 71-88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Mopper, K. Determination of the Tropospheric Hydroxyl Radical by Liquidphase Scrubbing and HPLC: Preliminary Results. Journal of Atmospheric Chemistry 36, 81–105 (2000). https://doi.org/10.1023/A:1006313021834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006313021834

Navigation