Skip to main content
Log in

NaCl Aerosol Particle Hygroscopicity Dependence on Mixing with Organic Compounds

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Organic compounds in the atmosphere can influence the activation, growth and lifetimes of haze, fog and cloud droplets by changing the condensation and evaporation rates of liquid water by these aqueous aerosol particles. Depending on the nature and properties of the organic compounds, the change can be to enhance or reduce these rates. In this paper we used a tandem differential mobility analyzer (TDMA) to examine the effect of tetracosane, octanoic acid, and lauric acid on the hygroscopic properties of NaCl aerosol particles at relative humidities (RH) between 30 and 95%. These organic compounds have been identified in ambient aerosol particle samples. A slight lowering of the deliquescence relative humidity (DRH) and suppression of hygroscopic growth for the NaCl-organic compound mixtures were observed when compared to pure NaCl particles. The growth of pure NaCl particles was 2.25 in diameter at 85% RH while the growth of the mixed particles was 1.3 to 1.7 in particle diameter at 85% RH with organic mass fraction of 30–50%. This shows that these organic compounds have to be present in rather large mass fractions to effect the hygroscopic behavior to a similar degree observed for ambient aerosol during field measurements. Despite the mixing of the organic material with NaCl, hysteresis was observed for decreasing RH histories, suggesting the formation of metastable droplets. These laboratory results are strikingly similar to ambient field results. For example, if the total organic mass fraction of the particles is between 0.30 and 0.50, the particle growth at 85% RH is about a factor of 1.4 for the laboratory and field measurements. Such reduction in growth compared to the pure inorganic salt is in contradiction to speculations concerning significant effects by organic compounds on cloud condensation nuclei and thus formation on clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang, D. P. Y. and Hill, R. C., 1980: Retardation of aqueous droplet evaporation by air pollutants, Atmos. Environ. 14, 803-807.

    Google Scholar 

  • Cohen, M. D., Flagan, R. C., and Seinfeld, J. H., 1987: Studies of concentrated electrolyte solutions using the electrodynamic balance; 1. Water activities for single electrolytes solutions, J. Phys. Chem. 91, 4563-4574.

    Google Scholar 

  • Covert, D. S. and Heintzenberg, J., 1993: Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard, Atmos. Environ. 27A, 2989-2997.

    Google Scholar 

  • CRC Handbook of Chemistry and Physics, 1995: 76th edition, CRC Press, New York.

  • Derjaguin, B. V., Bakanov, S. P., and Kurghin, I. S., 1960: The influencee of a foreign film on evaporation of liquid drops, Discuss. Faraday Soc., 30, 96-99.

    Article  Google Scholar 

  • Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., and Wallace, G. T., 1983: Organic material in the global troposphere, Rev. Geophys. Space Phys. 21(4), 921-952.

    Google Scholar 

  • Finlayson-Pitts, G. J. and Pitts, J. N., 1986: Atmospheric Chemistry, John Wiley & Sons.

  • Giddings, W. P. and Baker, M. B., 1977: Sources and effects of monolayers on atmospheric water droplets, J. Atmos. Sci. 34, 1957-1964.

    Article  Google Scholar 

  • Gill, P. S., Graedel, T. E., and Weschler, C. J., 1983: Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes, Rev. Geophys. Space Phys. 21(4), 903-920.

    Google Scholar 

  • Graedel, T. E. and Weschler, C. J., 1981: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys. 19(4), 505-539.

    Google Scholar 

  • Hallberg, A., Ogren, J. O., Noone, K. J., Heintzenberg, J., Berner, A., Solly, I., Kruisz, C., Reischl, G., Fuzzi, S., Faccini, M. C., Hansson, H.-C., Wiedensohler, A., and Svenningsson, I. B., 1992: Phase partitioning for different aerosol species in fog, Tellus 44B, 545-555.

    Article  Google Scholar 

  • Hämeri, K., Rood, M. J., and Hansson, H.-C., 1992: Hygroscopic properties of a NaCl aerosol coated with organic compounds, 1992 Aerosol Conference, September, Oxford, England, J. Aerosol Sci. 23S, 437-440.

    Article  Google Scholar 

  • Hansson, H.-C. and Svenningsson, I. B., 1993: Aerosol and Clouds, Proceedings of the Sixth European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants, Varese, Report EUR 15609/1 EN.

  • Hansson, H.-C., Wiedensohler, A., Rood, M. J., and Covert, D. S., 1990: Experimental determination of the hygroscopic properties of organically coated aerosol particles, J. Aerosol Sci. 21S, 241-244.

    Article  Google Scholar 

  • Heintzenberg, J., 1989: Fine particles in the global troposphere - A review, Tellus 41B, 149-160.

    Google Scholar 

  • Hoffman, E. J. and Duce, R. A., 1977: Organic material in marine atmospheric particluate material, concentrations and particle size distributions, Geophys. Res. Lett. 4, 449-452.

    Google Scholar 

  • Husar, R. B. and Shu, W. R., 1975: Thermal analysis of the Los Angeles smog aerosol, J. Appl. Meteor. 14, 1558-1565.

    Article  Google Scholar 

  • International Critical Tables, 1930: McGraw-Hill, New York.

  • Kulmala, M., Korhonen, P., Vesala, T., Hansson, H.-C., Noone, K., and Svenningsson, B., 1996: The effect of hygroscopicity on cloud droplet formation, Tellus 48B, 347-360.

    Article  Google Scholar 

  • Novakov, T. and Penner, J. E., 1993: Large contribution of aerosols to cloud-condensation-nuclei concentrations, Nature 365, 823-826.

    Article  Google Scholar 

  • Lange N., 1967: Handbook of Chemistry, McGraw-Hill, New York.

    Google Scholar 

  • Li, Z., Williams, A., and Rood, M. J., 1998: Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute, J. Atmos. Sci., in press, p. 8.

  • Otani, Y. and Wang, C. S., 1984: Growth and deposition of saline droplets covered with a monolayer of surfactant, Aerosol Sci. Technol. 3, 155-166.

    Google Scholar 

  • Podzimek, J. and Saad, A. N., 1975: Retardation of condensation nuclei growth by surfactant, J. Geophys. Res. 80, 3386-3392.

    Google Scholar 

  • Rideal, E. K., 1925: On the influence of surface films in the evaporation of water, J. Phys. Chem. 29, 1585-1588.

    Google Scholar 

  • Rubel, G. O. and Gentry, J. W., 1985: Measurement of water and ammonia accommodation coefficients at surfaces with adsorbed monolayers of hexadecanol, J. Atmos. Sci. 16(6), 571-574.

    Google Scholar 

  • Saxena, P., Hildeman, L. M., McMurry, P. H., and Seinfeld, J. H., 1995: Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res. 100(D9), 18755-18770.

    Article  Google Scholar 

  • Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57-109.

    Google Scholar 

  • Schuetzle, D., Cronn, D., Crittenden, A. L., and Charlson, R. J., 1975: Molecular composition of secondary aerosol and its possible origin, Environ. Sci. Technol. 9, 838-845.

    Google Scholar 

  • Shulman, M. L., Jacobson, M. C., Charlson, R. J., Synovec, R. E., and Young, T. E., 1996: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett. 23(3), 277-280.

    Article  Google Scholar 

  • Skific, M. J., 1997: Ambient aerosol optical and chemical properties at an anthropogenically perturbed, mid-latitude, continental site, M.S. Thesis, University of Illinois, Urbana, Illinois, U.S.A., p. 83.

    Google Scholar 

  • Svenningsson, I. B., Hansson, H.-C., Wiedensohler, A., Ogren, J. A., Noone, K. J., and Hallberg, A., 1992: Hygroscopic growth of aerosol particles in the Po-valley, Tellus 44B, 556-569.

    Article  Google Scholar 

  • Svenningsson, I. B., Hansson, H.-C., Wiedensohler, A., Noone, K. J., Ogren, J., Hallberg, A., and Colvile, R., 1994: Hygroscopic growth of aerosol particles and its influence on nucleation scavening in cloud: Experimental results from Kleiner Feldberg, J. Atmos. Chem. 19, 129-153.

    Google Scholar 

  • Svenningsson, I. B., Hansson, H.-C., Martinsson, B., Wiedensohler, A., Swietlicki, E., and Cederfelt, S.-I., 1996: Cloud droplet nucleation scavenging in relation to the size and hygroscopic behavior of aerosol particles, accepted for publication in Atmos. Environ.

  • Tang, I. and Munkelwitz, H. R., 1977: Aerosol growth studies III; Ammonium bisulfate aerosols in a moist atmosphere, J. Aerosol Sci. 8, 321-330.

    Article  Google Scholar 

  • Thaveau, B., Sepolay, R., and Piekarski, S., 1987: Influence of surfactants on droplet growth by water vapor condensation on NaCl particles: Experimental investigations and theoretical implications, Atmos. Res. 21, 83-96.

    Article  Google Scholar 

  • Thibodeaux, L. J., Nadler, K. C., Valsaraj, K. T., and Reible, D. D., 1991: The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols - Competitive adsorption theory predictions, Atmos. Environ. 25A, 1649-1656.

    Google Scholar 

  • Vesala, T., Kulmala, M., Vrtala, A., and Wagner, P. E., 1997: Models for condensational growth and evaporation of binary aerosol particles, J. Aerosol Sci. 28, 565-598.

    Article  Google Scholar 

  • Winkler, P., 1988: The growth of atmospheric aerosol particles with relative humidity, Physica Scripta 37, 223-230.

    Google Scholar 

  • Zhang, X. Q., McMurry, P. H., Hering, S. V., and Casuccio, G. S., 1993: Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the Grand Canyon, Atmos. Environ. 27A(10), 1593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, HC., Rood, M.J., Koloutsou-Vakakis, S. et al. NaCl Aerosol Particle Hygroscopicity Dependence on Mixing with Organic Compounds. Journal of Atmospheric Chemistry 31, 321–346 (1998). https://doi.org/10.1023/A:1006174514022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006174514022

Navigation