Skip to main content
Log in

The Integrability Conditions in the Inverse Problem of the Calculus of Variations for Second-Order Ordinary Differential Equations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

A novel approach to a coordinate-free analysis of the multiplier question in the inverseproblem of the calculus of variations, initiated in a previous publication, is completed in thefollowing sense: under quite general circumstances, the complete set of passivity or integrabilityconditions is computed for systems with arbitrary dimension n. The results are appliedto prove that the problem is always solvable in the case that the Jacobi endomorphism of thesystem is a multiple of the identity. This generalizes to arbitrary n a result derived byDouglas for n=2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I. and Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations,Mem. Amer. Math. Soc. 98(473) (1992).

  2. Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L. and Griffiths, P. A.: Exterior Differential Systems, Math. Sci. Res. Inst. Publ. 18, Springer-Verlag, New York, 1991.

    Google Scholar 

  3. Cantrijn, F., Sarlet, W., Vandecasteele, A. and Martínez, E.: Complete separability of time-dependent second-order ordinary differential equations,Acta Appl. Math. 42 (1996), 309–334.

    Google Scholar 

  4. Crampin, M., Martínez, E. and Sarlet, W.: Linear connections for systems of second-order ordinary differential equations,Ann. Inst. H. Poincaré 65 (1996), 223–249.

    Google Scholar 

  5. Crampin, M., Sarlet, W., Martínez, E., Byrnes, G. B. and Prince, G. E.: Towards a geometrical understanding of Douglas’s solution of the inverse problem of the calculus of variations,Inverse Problems 10 (1994), 245–260.

    Google Scholar 

  6. Douglas, J.: Solution of the inverse problem of the calculus of variations,Trans. Amer. Math. Soc. 50 (1941), 71–128.

    Google Scholar 

  7. Grifone, J. and Muzsnay, Z.: Sur le problème inverse du calcul des variations: existence de lagrangiens associées à un spray dans le cas isotrope, Preprint No. 78, Laboratoire de Mathématiques, Université Toulouse III, 1996.

  8. Janet, M.: Sur les systèmes d’équations aux dérivées partielles,J. Math. Pure Appl. 3 (1920), 65–151.

    Google Scholar 

  9. Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles, Cahiers Scientifiques, Fascicule IV, Gauthier-Villars, Paris, 1929.

    Google Scholar 

  10. Martínez, E., Cariñena, J. F. and Sarlet, W.: Derivations of differential forms along the tangent bundle projection. Part II,Differential Geom. Appl. 3 (1993), 1–29.

    Google Scholar 

  11. Martínez, E., Cariñena, J. F. and Sarlet, W.: Geometric characterization of separable secondorder differential equations,Math. Proc. Cambridge Philos. Soc. 113 (1993), 205–224.

    Google Scholar 

  12. Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G. and Rubano, C.: The inverse problem in the calculus of variations and the geometry of the tangent bundle,Phys. Rep. 188 (1990), 147–284.

    Google Scholar 

  13. Muzsnay, Z.: Sur le problème inverse du calcul des variations, Thèse de Doctorat, Université Paul Sabatier (Toulouse III), 1997.

  14. Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  15. Pommaret, J. F.: Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, London, 1978.

    Google Scholar 

  16. Reid, G. J.: Algorithms for reducing a system of PDE’s to standard form, determining the dimension of its solution space and calculating its Taylor series solution,European J. Appl. Math. 2 (1991), 293–318.

    Google Scholar 

  17. Riquier, C.: Les systèmes d’équations aux derivées partielles, Gauthier-Villars, Paris, 1910.

    Google Scholar 

  18. Sarlet, W.: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics,J. Phys. A 15 (1982), 1503–1517.

    Google Scholar 

  19. Sarlet, W., Vandecasteele, A., Cantrijn, F. and Martínez, E.: Derivations of forms along a map: The framework for time-dependent second-order equations,Differential Geom. Appl. 5 (1995) 171–203.

    Google Scholar 

  20. Seiler, W. M.: On the arbitrariness of the general solution of an involutive partial differential equation,J. Math. Phys. 35 (1994), 486–498.

    Google Scholar 

  21. Seiler, W. M. and Tucker, R. W.: Involution of constrained dynamics I: The Dirac approach,J. Phys. A 28 (1995), 4431–4451.

    Google Scholar 

  22. Topunov, V. L.: Reducing systems of linear differential equations to passive form,Acta Appl. Math. 16 (1989), 191–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarlet, W., Crampin, M. & Martínez, E. The Integrability Conditions in the Inverse Problem of the Calculus of Variations for Second-Order Ordinary Differential Equations. Acta Applicandae Mathematicae 54, 233–273 (1998). https://doi.org/10.1023/A:1006102121371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006102121371

Navigation