Skip to main content
Log in

Targeting DNA methyltransferase in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

DNA methyltransferase is an enzyme responsible for generating and maintaining DNA methylation patterns. DNA methylation patterns control different genome functions, thus they are an important component of the epigenetic information. It has been recently postulated that DNA methyltransferase plays an important role in oncogenesis and that it is a candidate target for anticancer therapy. This commentary discusses the possible mechanisms through which DNA methyltransferase participates in oncogenesis and the rationale for targeting it in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szyf M: DNA methylation properties: consequences for pharmacology. Trends Pharmacol Sci 7: 233-238, 1994

    Article  Google Scholar 

  2. Szyf M: The DNA methylation machinery as a target for anticancer therapy. Pharmacol Ther 70: 1-37, 1996

    Article  PubMed  Google Scholar 

  3. Adams RL, McKay EL, Craig LM, Burdon RH: Mouse DNA mathylase: methylation of native DNA. Biochim Biophys Acta 561: 345-357, 1979

    PubMed  Google Scholar 

  4. Yisraeli J, Szyf M: The pattern of methylation of eukaryotic genes. In: Razin A, Cedar H, Riggs AD (eds) DNA Methylation: Biochemistry & Biological Significance, pp 353-378. Springer-Verlag, New York, 1984.

    Google Scholar 

  5. Yoder JA, Somans NS, Verdine GL, Bestor TH: DNA (cytosine-5)-methyltransferases in mouse cells and tissues. J Mol Biol 270: 385-395, 1997

    Article  PubMed  Google Scholar 

  6. Becker PB, Ruppert S, Schutz G: Genomic tootprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell 51: 435-443, 1987

    Article  PubMed  Google Scholar 

  7. Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding site in genomic chromatin. Cell 88: 471-481, 1997

    Article  PubMed  Google Scholar 

  8. Kass SU, Landsberger N, Wolffe AP: DNA methylation direct a time-dependent repression of transcription initiation. Curr Biol 7: 157-165, 1997

    Article  PubMed  Google Scholar 

  9. Zuccotti M, Monk M: Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nature Genet 9: 316-320, 1995

    Article  PubMed  Google Scholar 

  10. Sapienza C, Peterson AC, Rossant J, Balling R: Degree of methylation of transgenes is dependent on gamete of origin. Nature 328: 251-254, 1987

    Article  PubMed  Google Scholar 

  11. Razin A, Cedar H: DNA methylation and gene expression. Microbiol Rev 55: 451-458, 1991

    PubMed  Google Scholar 

  12. Baylin SB, Makos M, Wu JJ, Yen RW, de Bustros A, Vertino P, Nelkin BD: Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells 3: 383-390, 1991

    PubMed  Google Scholar 

  13. Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301: 89-92, 1983

    PubMed  Google Scholar 

  14. Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T: CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8: 1063-1067, 1993

    PubMed  Google Scholar 

  15. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger P, Baylin SB, Sidransky D: 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nature Med 1: 686-692, 1995

    Article  PubMed  Google Scholar 

  16. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821-9826, 1996

    Article  PubMed  Google Scholar 

  17. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, Baylin SB: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700-9704, 1994

    PubMed  Google Scholar 

  18. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S: Silencing of the E-cadherin invasion suppresor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 92: 7416-7419, 1995

    PubMed  Google Scholar 

  19. Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, Baylin SB, Issa JP: Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res 57: 3370-3374, 1997

    PubMed  Google Scholar 

  20. Angel P, Karin M: The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129-157, 1991

    Article  PubMed  Google Scholar 

  21. Binetruy B, Smeal T, Karin M: Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351: 122-127, 1991

    PubMed  Google Scholar 

  22. Lowy D, Wilumsen BM: Function and regulation of Ras. Annu Rev Biochem 62: 851-891, 1993

    Article  PubMed  Google Scholar 

  23. Kautiainen TL, Jones PA: DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem 261: 1594-1598, 1986

    PubMed  Google Scholar 

  24. el-Deiry WS, Nelkin BD, Celano P, Yen RW, Falco JP, Hamilton SR, Baylin SB: High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci USA 88: 3470-3474, 1991

    PubMed  Google Scholar 

  25. Lee PJ, Washer LL, Law DJ, Boland CR, Horon IL, Feinberg AP: Limited up-regulation of DNA methyltransferase in human colon cancer reflecting increased cell proliferation. Proc Natl Acad Sci USA 93: 10366-10370, 1996

    Article  PubMed  Google Scholar 

  26. Belinsky SA, Nikula KJ, Baylin SB, Issa J-P: Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci USA 93: 4045-4050, 1996

    Article  PubMed  Google Scholar 

  27. Rouleau J, Tanigawa G, Szyf M: The mouse DNA methyltransferase 5'-region. A unique housekeeping gene promoter. J Biol Chem 267: 7368-7377, 1992

    PubMed  Google Scholar 

  28. Rouleau J, MacLeod AR, Szyf M: Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J Biol Chem 270: 1595-1601, 1995

    Article  PubMed  Google Scholar 

  29. MacLeod AR, Rouleau J, Szyf M: Regulation of DNA methylation by the Ras signaling pathway. J Biol Chem 270: 11327-11337, 1995

    Article  PubMed  Google Scholar 

  30. Yang J, Deng C, Hemati N, Hanash SM, Richardson BC: Effect of mitogenic stimulation and DNA methylation on human T cell methyltransferase expression and activity. J Immunol 159: 1303-1309, 1997

    PubMed  Google Scholar 

  31. Johnson R, Spiegelman B, Hanahan D, Wisdon R: Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16: 4504-4511, 1996

    PubMed  Google Scholar 

  32. Johnson R, van Lingen B, Papaioannou VE, Spiegelman BM: A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7: 1309-1317, 1993

    PubMed  Google Scholar 

  33. MacLeod AR, Szyf M: Expression of an antisense to the DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem 270: 8037-8043, 1995

    Article  PubMed  Google Scholar 

  34. Ramchandani S, MacLeod AR, Pinard M, von Hofe E, Szyf M: Inhibition of tumorigenesis by a cytosine-DNA methyltransferase antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 94: 684-689, 1997

    Article  PubMed  Google Scholar 

  35. Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD: Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37: 367-379, 1984

    Article  PubMed  Google Scholar 

  36. De Caprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston D: SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275-283, 1988

    Article  PubMed  Google Scholar 

  37. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596-602, 1983

    PubMed  Google Scholar 

  38. Chuang LS-H, Ian H-I, Koh T-W, Ng H-H, Xu G, Li BFL: Human DNA-(cytosine-5) Methyltransferase-PCNA complex as a target for p21wafl. Science 277: 1996-2000, 1997

    PubMed  Google Scholar 

  39. Kopp MU, Winterhalter KH, Trueb B: DNA methylation accounts for the inhibition of collagen VI expression in transformed fibroblasts. Eur J Biochem 249: 489-496, 1997

    Article  PubMed  Google Scholar 

  40. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E, Weinberg RA, Jaenisch R: Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81: 197-205, 1995

    Article  PubMed  Google Scholar 

  41. Jackson-Grusby L, Laird PW, Magge SN, Moeller BJ, Jaenisch R: Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA 94: 4681-4685, 1997

    Article  PubMed  Google Scholar 

  42. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H: Constitutive transcriptional activation by a beta-catenin-Tef complex in APC-/-colon carcinoma. Science 275: 1784-1787, 1997

    Article  PubMed  Google Scholar 

  43. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP: Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72: 141-196, 1998

    PubMed  Google Scholar 

  44. Graff JR, Herman JG, Myohanen S, Baylin SB, Vertino PM: Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 272: 22322-22329, 1997

    Article  PubMed  Google Scholar 

  45. Szyf M, Schimmer BP, Seidman JG: Nucleotide-sequence-specific de novo methylation in a somatic murine cell line. Proc Natl Acad Sci USA 86: 6853-6857, 1989

    PubMed  Google Scholar 

  46. Vertino PM, Yen RW, Gao J, Baylin SB: De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 16: 4555-4565, 1996

    PubMed  Google Scholar 

  47. Szyf M: DNA methylation patterns: an additional level of information? Biochem Cell Biol 69: 764-767, 1991

    PubMed  Google Scholar 

  48. Martin RG, Oppenheim A: Initiation points for DNA replication in nontransformed and simian virus 40-transformed Chinese hamster lung cells. Cell 11: 859-869, 1977

    Article  PubMed  Google Scholar 

  49. Rein T, Zorbas H, DePamphilis M: Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides. Mol Cell Biol 17: 416-426, 1997

    PubMed  Google Scholar 

  50. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 366: 701-704, 1993

    Article  PubMed  Google Scholar 

  51. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al.: WAΓ1 a potential mediator of p53 tumor suppression. Cell 75: 817-825, 1993

    PubMed  Google Scholar 

  52. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang X: Transforming growth factor β induces the cyclin-dependent kinase inhibitor of p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92: 5545-5549, 1995

    PubMed  Google Scholar 

  53. Waga S, Hannon GJ, Beach D, Stilman B: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574-578, 1994

    Article  PubMed  Google Scholar 

  54. Xiong Y, Zhang H, Beach D: Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7: 1572-1583, 1993

    PubMed  Google Scholar 

  55. Dimri GB, Nakanishi M, Desprez PY, Smith JR, Campisi J: Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol Cell Biol 16: 2987-2997, 1996

    PubMed  Google Scholar 

  56. Freedman VH, Shin S: Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3: 355-359, 1974

    Article  PubMed  Google Scholar 

  57. Wu RC, Schontal AH: Activation of P53-P21(WAF1) pathway in response to disruption of cell-matrix interactions. J Biol Chem 272: 29091-29098, 1997

    Article  PubMed  Google Scholar 

  58. Yang ZY, Perkins ND, Ohno T, Nabel FG, Nabel GJ: The p21 cyclin-dependent kinase inhibitor suppresses tumorigenicity in vivo. Nat Med 1: 1052-1056, 1995

    Article  PubMed  Google Scholar 

  59. Li R, Hannon GJ, Beach D, Stillman B: Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr Biol 6: 189-199, 1996

    Article  PubMed  Google Scholar 

  60. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ et al.: Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267: 1018-1021, 1995

    PubMed  Google Scholar 

  61. Shiohara M, Koike K, Komiyama A, Koeffler HP: p21WAF1 mutations and human malignancies. Leukemia Lymphoma 26: 35-41, 1997

    Google Scholar 

  62. Gruenbaum Y, Cedar H, Razin A: Substrate and sequence specificity of an eukaryotic DNA methylase. Nature 295: 620-622, 1982

    PubMed  Google Scholar 

  63. Wainfan E, Dizik M, Stender M, Christman JK: Rapid appearance of hypomethylated DNA in livers of rats fed can cer-promoting, methyl-deficient diets. Cancer Res 49: 4094-4097, 1989

    PubMed  Google Scholar 

  64. Christman JK, Sheikhnejad G, Dizik M, Abileah S, Wainfan E: Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis 14: 551-557, 1993

    PubMed  Google Scholar 

  65. Szyf M, Bozovic V, Tanigawa G: Growth regulation of mouse DNA methyltransferase gene expression. J Biol Chem 266: 10027-10030, 1991

    PubMed  Google Scholar 

  66. Szyf M, Theberge J, Bozovic V: Ras induces a general DNA demethylation activity in mouse embryonal P19 cells. J Biol Chem 270: 12690-12696, 1995

    Article  PubMed  Google Scholar 

  67. Tucker KL, Talbot D, Lee MA, Leonhardt H, Jaenisch R: Complementation of methylation deficiency in embryonic stem cells by a DNA methyltransferase minigene. Proc Natl Acad Sci USA 93: 12920-12925, 1996

    Article  PubMed  Google Scholar 

  68. Jones PA: Altering gene expression with 5-azacytidine. Cell 40: 485-486, 1985

    Article  PubMed  Google Scholar 

  69. Wu JC, Santi DV: On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clinic Biol Res 198: 119-129, 1985

    Google Scholar 

  70. Jutterman R, Li E, Jaenisch R: Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91: 11797-11801, 1994

    PubMed  Google Scholar 

  71. Akhtar S, Agrawal S: In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci 18: 12-18, 1997

    Article  PubMed  Google Scholar 

  72. Szyf M, Rouleau J, Theberge J, Bozovic V: Induction of myogenic differentiation by an expression vector encoding the DNA methyltransferase cDNA sequence in the antisense orientation. J Biol Chem 267: 12831-12836, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyf, M. Targeting DNA methyltransferase in cancer. Cancer Metastasis Rev 17, 219–231 (1998). https://doi.org/10.1023/A:1006023023787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006023023787

Navigation