Skip to main content
Log in

N-Glycoprotein biosynthesis in plants: recent developments and future trends

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

N-glycosylation is a major modification of proteins in plant cells. This process starts in the endoplasmic reticulum by the co-translational transfer of a precursor oligosaccharide to specific asparagine residues of the nascent polypeptide chain. Processing of this oligosaccharide into high-mannose-type, paucimannosidic-type, hybrid-type or complex-type N-glycans occurs in the secretory pathway as the glycoprotein moves from the endoplasmic reticulum to its final destination. At the end of their maturation, some plant N-glycans have typical structures that differ from those found in their mammalian counterpart by the absence of sialic acid and the presence of β(1,2)-xylose and α(1,3)-fucose residues. Glycosidases and glycosyltransferases that respectively catalyse the stepwise trimming and addition of sugar residues are generally considered as working in a co-ordinated and highly ordered fashion to form mature N-glycans. On the basis of this assembly line concept, fast progress is currently made by using N-linked glycan structures as milestones of the intracellular transport of proteins along the plant secretory pathway. Further developments of this approach will need to more precisely define the topological distribution of glycosyltransferases within a plant Golgi stack. In contrast with their acknowledged role in the targeting of lysosomal hydrolases in mammalian cells, N-glycans have no specific function in the transport of glycoproteins into the plant vacuole. However, the presence of N-glycans, regardless of their structures, is necessary for an efficient secretion of plant glycoproteins. In the biotechnology field, transgenic plants are rapidly emerging as an important system for the production of recombinant glycoproteins intended for therapeutic purposes, which is a strong motivation to speed up research in plant glycobiology. In this regard, the potential and limits of plant cells as a factory for the production of mammalian glycoproteins will be illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aalberse RC, Koshte V, Clemens JG: Cross-reactions between vegetable foods, pollen and bee venom due to IgE antibodies to a ubiquitous carbohydrate determinant. Int Arch Allergy Appl Immunol 66: 259–260 (1981).

    Google Scholar 

  2. Altmann F: More than silk and honey-or, can insect cells serve in the production of therapeutic glycoproteins? Glycoconjugate J 14: 643–646 (1997).

    Google Scholar 

  3. Ashford DA, Dwek RA, Welply JK, Amatayakul S, Homans SW, Lis H, Taylor GN, Sharon N, Rademacher TW: The β-1–>2–D-xylose and α-1→3–L-fucose substituted N-linked oligosaccharides from Erythrina cristagalli lectin. Eur J Biochem 166: 311–320 (1987).

    Google Scholar 

  4. Ashford DA, Dwek RA, Rademacher TW, Lis, Sharon N: The glycosylation of glycoprotein lectins. Intra-and intergenus variation in N-linked oligosaccharide expression. Carbohydr Res 213: 215–227 (1991).

    Google Scholar 

  5. Batanero E, Villalba M, Monsalve RI, Rodriguez R: Crossreactivity between the major allergen from olive and unrelated glycoproteins: evidence of an epitope in the glycan moiety of the allergen. J Allergy Clin Immunol 97: 1264–1271 (1996).

    Google Scholar 

  6. Bollini R, Ceriotti A, Daminati MG, Vitale A: Glycosylation is not needed for the intracellular transport of phytohemagglutinin in developping Phaseolus vulgaris cotyledons and for the maintenance of its biological activities. Physiol Plant 65: 15–22 (1985).

    Google Scholar 

  7. Bollini R, Vitale, Chrispeels MJ: In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for tow glycosylation steps. J Cell Biol 96: 999–1007 (1983).

    Google Scholar 

  8. Bonin CP, Potter I, Vanzin GF, Reiter WD: The mur 1 gene of Arabidopsis thaliana encodes an isoform of GDPD-mannose-4, 6–dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci USA 94: 2085–2090 (1997).

    Google Scholar 

  9. Bowles DJ, Marcus SE, Pappin DJC, Findlay JBC, Eliopoulos E, Maycox PR, Burgess J: Posttranslational processing of concanavalin A precursors in jack bean cotyledons. J Cell Biol 102: 1284–1297 (1986).

    Google Scholar 

  10. Cabanes-Macheteau M, Fitchette-Lainé AC, Loutelier-Bourhis C, Lange C, Vine N, Ma J, Lerouge P, Faye L: N-glycosylation of a mouse IgG expressed in transgenic tobacco plants. Submitted.

  11. Capon C, Piller F, Wieruszeski JM, Leroy Y, Fournet B: Structural analysis of the carbohydrate chain isolated from jacalin lectin. Carbohyd Res 199: 121–127 (1990).

    Google Scholar 

  12. Chrispeels MJ, Hartl PM, Sturm A, Faye L: Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. J Biol Chem 261: 1021–1024 (1986).

    Google Scholar 

  13. Chrispeels MJ, Faye L: The production of recombinant glycoproteins with defined non-immunogenic glycans. In: Owen MRL, Pen J, (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins, pp. 99–113. John Wiley, Chichester, UK (1996).

    Google Scholar 

  14. Costa J, Ashford DA, Nimtz M, Bento I, Frazao C, Esteves CL, Faro CJ, Kervinen J, Pires E, Verissimo P, Wlodawer A, Carrondo MA: The glycosylation of the aspartic proteinases from barley (Hordeum vulgare L.) and cardoon (Cynara cardunculus L.). Eur J Biochem 243: 695–700 (1997).

    Google Scholar 

  15. Crawley SC, Hindsgaul O, Ratcliffe RM, Lamontagne LR, Palcic MM: A plant fucosyltransferase with human lewis blood-group specificity. Carbohydr Res 193: 249–256 (1989).

    Google Scholar 

  16. D'Andrea G, Bouwstra JB, Kamerling JP, Vliegenthart JFG: Primary structure of the xylose-containing N-linked carbohydrate moiety from ascorbic acid oxidase of Cucurbita pepo medullosa. Glycoconjugate 5: 151–157 (1988).

    Google Scholar 

  17. Driouich A, Gonnet P, Makkie M, Laine AC, Faye L: The role of high-mannose and complex asparagine-linked glycans in the secretion and stability of glycoproteins. Planta 180: 96–104 (1989).

    Google Scholar 

  18. Faye L, Sturm A, Bollini R, Vitale A, Chrispeels MJ: The position of the oligosaccharides side-chains of phytohemagglutinin and their accessibility to glycosidases determines their subsequent processing in the Golgi. Eur J Biochem 158: 655–661 (1986).

    Google Scholar 

  19. Faye L, Chrispeels MJ: Transport and processing of the glycosylated precursor of concanavalin A in jack-bean. Planta 170: 217–224 (1987).

    Google Scholar 

  20. Faye L, Chispeels MJ: Common antigenic determinants in the glycoproteins of plants, molluscs and insects. Glycoconjugate J 5: 245–256 (1988).

    Google Scholar 

  21. Faye L, Chrispeels MJ: Apparent inhibition of β-fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. Plant Physiol 89: 845–851 (1989).

    Google Scholar 

  22. Faye L, Gomord V, Fitchette-Lainé AC, Chrispeels MJ: Affinity purification of antibodies specific for Asn-linked glycans containing α1→3 fucose or β1→2 xylose. Anal Biochem 209: 104–108 (1993).

    Google Scholar 

  23. Feizi T: Oligosaccharides that mediate mammalian cell-cell adhesion. Curr Opin Struct Biol 3: 701–710 (1993).

    Google Scholar 

  24. Fiedler K, Simons K: The role of N-glycans in the secretory pathway. Cell 81: 309–312 (1995).

    Google Scholar 

  25. Fitchette-Lainé AC, Gomord V, Chekkafi A, Faye L: Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J 5: 673–682 (1994).

    Google Scholar 

  26. Fitchette-Lainé AC, Gomord V, Cabanes m, Michalski JC, Saint-Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P, Faye L: N-glycans harboring the lewis a epitope are expressed at the surface of plant cells. Plant J 12: 1411–1417 (1997).

    Google Scholar 

  27. Fitchette-Lainé AC, Denmat LA, Lerouge P, Faye L: Analysis of N-and O-glycosylation of plant proteins. Meth Biotechnol 3: 271–289 (1998).

    Google Scholar 

  28. Fournet B, Leroy Y, Wieruszeski JM, Montreuil J, Poretz RD, Goldberg, R: Primary structure of an N-glycosidic carbohydrate unit derived from Sophora japonica lectin. Eur J Biochem 166: 321–324 (1987).

    Google Scholar 

  29. Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Armentia A, Salcedo G, Gomez L: Role of complex asparaginelinked glycans in the allergenicity of plant glycoproteins. Glycobiology 6: 471–477 (1996).

    Google Scholar 

  30. Gaudrault PS, Beevers L: Protein bodies and vacuoles as lysosomes. Investigations into the role of mannose-6–phosphate in intracellular transport of glycosidases in pea cotyledons. Plant Physiol 76: 228–232 (1984).

    Google Scholar 

  31. Gray JSS, Yang BY, Hull SR, Venzke DP, Montgomery R: The glycans of soybean peroxidase. Glycobiology 6: 23–32 (1996).

    Google Scholar 

  32. Hase S, Koyama S, Daiyasu H, Takemoto H, Hara S, Kobayashi Y, Kyogoku Y, Ikenaka T: Structure of a sugar chain of a protease inhibitor isolated from Barbados pride seeds. J Biochem 100: 1–10 (1986).

    Google Scholar 

  33. Hammond C, Braakman I, Helenius A: Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91: 913–917 (1994).

    Google Scholar 

  34. Hayashi M, Tsuru A, Mitsui T, Takahashi N, Hanzawa H, Arata Y, Akazawa T: Structure and biosynthesis of the xylose-containing carbohydrate moiety of rice α-amylase. Eur J Biochem 191: 287–295 (1990).

    Google Scholar 

  35. Horsley D, Coleman J, Evans D, Crooks K, Peart J, Satiat-Jeunemaitre B, Hawes C: A monoclonal antibody, JIM 84, recognizes the Golgi apparatus and plasma membrane in plant cells. J Exp Bot 44: 223–229 (1993).

    Google Scholar 

  36. Ishihara H, Takahashi N, Oguri S, Tejima S: Complete structure of the carbohydrate moiety of stem bromelain. J Biol Chem 254: 10715–10719 (1979).

    Google Scholar 

  37. Jensen TL, Lo MA, Pind S, Williams DB, Goldberg AL, Riordan JR: Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 38: 129–135 (1995).

    Google Scholar 

  38. Joffe E, Stanley P: Mice lacking N-acetylglucosaminidase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 91: 728–732 (1994).

    Google Scholar 

  39. Johnson KD, Chrispeels MJ: Substrate specificities of Nacetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledons. Plant Physiol 84: 1301–1308 (1987).

    Google Scholar 

  40. Kaushal G., Pastuszak I, Hatanaka KI, Elbein AD: Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J Biol Chem 265: 16271–16279 (1990).

    Google Scholar 

  41. Kaushal G, Szumilo T, Pastuszak I, Elbein AD: Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry 29: 2168–2176 (1990).

    Google Scholar 

  42. Kitagaki-Ogawa H, Matsumoto I, Seno N, Takahashi N, Endo S, Arata Y: Characterization of the carbohydrate moiety of Clerodendron trichotomum lectins. Eur J Biochem 161: 779–785 (1986).

    Google Scholar 

  43. Kimura Y, Hase S. Kobayashi Y, Kyogoku Y, Ikenaka T, Funatsu G: Structures of sugar of ricin D. J Biochem 103: 944–949 (1988).

    Google Scholar 

  44. Kornfeld R, Kornfeld S: Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664 (1985).

    Google Scholar 

  45. Kurosaka A, Yano A, Itoh N, Kuroda Y, Nakagawa T, Kawasaki T: The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by antihorseradish peroxidase antiserum. J Biol Chem 266: 4168–4172 (1991).

    Google Scholar 

  46. Lawton K, von Schaewen A, Sturm A: unpublished results.

  47. Lehrman MA, Zhu X, Khounlo S: Amplification and molecular cloning of the hamster tunicamycin-sensitive Nacetylglucosamine-1–phosphate transferase gene: the hamster and yeast enzymes share a common peptide sequence. J Biol Chem 263: 19796–19803 (1988).

    Google Scholar 

  48. Lerouge P, Fitchette-Lainé AC, Chekkafi A, Avidgor V, Faye L: N-linked oligosaccharide processing is not necessary for glycoprotein secretion in plants. Plant J 10: 101–107 (1996).

    Google Scholar 

  49. Lis H, Sharon N: Soybean agglutinin: a plant glycoprotein. J Biol Chem 253: 3468–3476 (1978).

    Google Scholar 

  50. Ma J, Lehner T, Stabila P, Fux CI, Hiatt A: Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur J Immunol 24: 131–138 (1994).

    Google Scholar 

  51. Melo NS, Nimtz M, Conradt HS, Fevereiro PS, Costa J: Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett 415: 186–191 (1997).

    Google Scholar 

  52. Navazio L, Baldan B, Mariani P, Gerwig GJ, Vliegenthart JFG: Primary structure of the N-linked carbohydrate chains of calreticulin from spinach leaves. Glycoconjugate J 13: 977–983 (1996).

    Google Scholar 

  53. Van Nguyen P, Peter F, Soling HD: Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 264: 17494–17501 (1989).

    Google Scholar 

  54. Ogawa H, Hijikata A, Amano m, Kojima K, Fukushima H, Ishizuka I, Kurihara Y, Matsumoto I: Structures and contribution to the antigenicity of oligosaccharides of japanese cedar (Cryptomeria japonica) pollen allergen Cry j I: relationship between the structures and antigenic epitopes of plant N-linked complex-type glycans. Glycoconjuguate J 13: 555–566 (1996).

    Google Scholar 

  55. Ohsuga H, Su SN, Takahashi N, Yang SY, Nakagawa H, Shimada I, Arata Y, Lee YC: The carbohydrate moiety of the Bermuda grass antigen BG60. J Biol Chem 271: 26653–26658 (1996).

    Google Scholar 

  56. Owen MRL, Pen J (eds): Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins. John Wiley, Chichester, UK (1996).

    Google Scholar 

  57. Oxley D, Bacic A: Microheterogeneity of N-glycosylation on a stylar self-incompatibility glycoprotein of Nicotiana alata. Glycobiology 5: 517–523 (1995).

    Google Scholar 

  58. Oxley D, Munro SLA, Craik DJ, Bacic A: Structure of Nglycans on the S3–and S6–allele stylar self-incompatibility ribonucleases of Nicotiana alata. Glycobiology 6: 611–618 (1996).

    Google Scholar 

  59. Parodi AJ, Mendelzon DH, Lederkremer GH, Martin-Barrientos J: Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2 andMan7GlcNAc2occurs in rat liver and Phaseolus vulgaris cells. J Biol Chem 259: 6351–6357 (1984).

    Google Scholar 

  60. Priem B, Solo-Kwan J, Wieruszeski JM, Strecker g, Nazih H, Morvan H: Isolation and characterization of free N-glycans of the oligomannoside type from the extracellular medium of a plant cell suspension. Glycoconjugate J 7: 121–132 (1990).

    Google Scholar 

  61. Priem B, Morvan H, Hafez AMA, Morvan C: Influence of a plant glycan of the oligomannoside type on the growth of flax plantelets. CR Acad Sc Paris 311: 411–416 (1990).

    Google Scholar 

  62. Priem B, Gross KC: Mannosyl-and xylosyl-containing glycans promote tomato fruit ripening. Plant Physiol 98: 399–401 (1992).

    Google Scholar 

  63. Priem B, Gitti R, Bush CA, Gross KC: Structure of ten free N-glycans in ripening tomato fruit. Plant Physiol 102: 445–458 (1993).

    Google Scholar 

  64. Rayon R, Gomord V, Faye L, Lerouge P: N-glycosylation of phytohemagglutinin expressed in bean cotyledons or in transgenic tobacco plants. Plant Physiol Biochem 34: 273–281 (1996).

    Google Scholar 

  65. Rayon C, Lerouge P, Faye L: The protein N-glycosylation in plants. J Exp Bot, in press.

  66. Rayon C, Cabanes-Macheteau M, Loutelier-Bourhis C, Saliot-Maire I, Lemoine J, Reiter WD, Lerouge P, Faye L: Characterization of N-glycans from Arabidopsis thaliana. Application to a fucose-deficient mutant. Submitted.

  67. Reiter WD, Chapple CCS, Somerville CR: Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261: 1032–1035 (1993).

    Google Scholar 

  68. Sheldon PS, Bowles DJ: The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J 11: 1297–1301 (1992).

    Google Scholar 

  69. Sly WS, Fisher MD: The phosphomannosyl recognition system for intracellular and intercellular transport of lysomal enzymes. Cell Biochem 18: 67–85 (1982).

    Google Scholar 

  70. Stanley P: Glycosylation mutants of animal cells. Annu Rev Genet 18: 525–552 (1984).

    Google Scholar 

  71. Stanley P: Glycosylation mutants and the functions of mammalian carbohydrates. Trends Genet 3: 77–81 (1987).

    Google Scholar 

  72. Staudacher E, Dalik T, Wawra P, Altmann F, März L: Functional purification and characterization of a GDP-fucose: β-N-acetylglucosamine (Fuc to Asn linked GlcNAc) α-1,3–fucosyltransferase from mung beans. Glycoconjugate J 12: 780–786 (1995).

    Google Scholar 

  73. Sturm A, Chrispeels MJ: The high mannose oligosaccharide of phytohemagglutinin is attached to asparagine 12 and the modified oligosaccharide to asparagine 60. Plant Physiol 80: 320–322 (1986).

    Google Scholar 

  74. Sturm A, Johnson KD, Szumilo T, Elbein AD, Chrispeels MJ: Subcellular localization of glycosidases and glycosyltransferases involved in the processing of the N-linked oligosaccharides. Plant Physiol 85: 741–745 (1987).

    Google Scholar 

  75. Sturm A, van Kuik JA, Vliegenthart JFG, Chrispeels MJ: Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem 262: 13392–13403 (1987).

    Google Scholar 

  76. Sturm A: Heterogeneity of the complex N-linked oligosaccharides at specific glycosylation sites of two secreted carrot glycoproteins. Eur J Biochem 199: 169–179 (1991).

    Google Scholar 

  77. Sturm A, Bergwerff AA, Vliegenthart JFG: 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur J Biochem 204: 313–316 (1992).

    Google Scholar 

  78. Szumilo T, Kaushal GP, Elbein AD: Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys 247: 261–271 (1986).

    Google Scholar 

  79. Szumilo T, Kaushal GP, Hori H, Elbein AD: Purification and properties of a glycoprotein processing α-mannosidase from mung bean seedling. Plant Physiol 81: 383–389 (1986).

    Google Scholar 

  80. Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago A, Zenita K, Hasegawa A, Kannagi R: Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl LewisA. Biochem Biophys Res Comun 179: 713–719 (1991).

    Google Scholar 

  81. Takahashi N, Hotta T, Ishihara H, Mori M, Tejima S, Bligny R, Akazawa T, Endo S, Arata Y: Xylose-containing common structural unit in N-linked oligosaccharides of laccase from sycamore cells. Biochemistry 25: 388–395 (1986).

    Google Scholar 

  82. Takahashi N, Hitotsuya H, Hanzawa H, Arata Y, Kurihara Y: Structural study of asparagine-linked oligosaccharide moiety of taste-modifying protein, miraculin. J Biol Chem 265: 7793–7798 (1990).

    Google Scholar 

  83. Tezuka K, Hayashi M, Ishihara H, Akazawa T, Takahashi N: Studies on synthetic of xylose-containing N-linked oligosaccharides deduced from substrate specificities of the processing enzymes in sycamore cells (Acer pseudoplatanus L.). Eur J Biochem 203: 401–413 (1992).

    Google Scholar 

  84. Tezuka K, Hayashi M, Ishihara H, Nishimura M, Onozaki K, Takahashi N: Purification and substrate specificity of β-xylosidase from sycamore cell (Acer pseudoplatanus L.): application for structural analysis of xylose-containing N-linked oligosaccharides. Anal Biochem 211: 205–209 (1993).

    Google Scholar 

  85. Trombetta SE, Bosch M, Parodi AJ: Glucosylation of glycoproteins by mammalian, plant, fungal and trypanosomatid protozoa microsomal membranes. Biochemistry 28: 8108–8116 (1989).

    Google Scholar 

  86. van Ree R, Aalberse RC: Pollen-vegetable food crossreactivity: serological and clinical relevance of crossreactive IgE. J Clin Immunoassay 16: 124–130 (1993).

    Google Scholar 

  87. van Ree: The oral allergy syndrome. In: Amin S, Lahti A, Maibach HI (eds) Contact Urticaria Syndrome, pp. 289–299 CRC Press, New York (1997).

    Google Scholar 

  88. van der Veen MJ, van Ree R, Aalberse RC, Akkerdaas J, Koppelman SJ, Jansen HM, van der Zee JS: Allergens, IgE, mediators, inflammatory mechanisms. J Allergy Clin Immunol 100: 327–334 (1997).

    Google Scholar 

  89. Vitale A, Chrispeels MJ: Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol 99: 133–140 (1984).

    Google Scholar 

  90. Voelker TA, Hermann EM, Chrispeels MJ: In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell 1: 95–104 (1989).

    Google Scholar 

  91. von Schaewen A, Sturm A, O'Neill J, Chrispeels MJ: Isolation of a mutant Arabidopsis plant that lacks Nacetylglucosaminyltransferase I is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol 102: 1109–1118 (1993).

    Google Scholar 

  92. Waldman BC, Oliver C, Krag SS: A cloning derivative of tunicamycin-resistant chinese hamster ovary cells with increased N-acetyllucosamine-phosphate transferase activity has altered asparagine linked glycosylation. J Cell Physiol 131: 302–317 (1987)

    Google Scholar 

  93. Wantyghem J, Platzer N, Giner M, Derappe C, Goussault Y: Structural analysis of the carbohydrate chain of glycopeptides isolated from Robinia pseudoacacia seed lectins. Carbohydr Res 236: 181–193 (1992).

    Google Scholar 

  94. Ward CL, Omura S, Kopito RR: Degradation of CFTR by ubiquitin-proteasome pathway. Cell 38: 121–127 (1995).

    Google Scholar 

  95. Weber A, Schroder H, Thalberg K, Marz L: Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2. Allergy 42: 464–470 (1987).

    Google Scholar 

  96. Wiertz EHJH, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL: The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84: 769–779 (1996).

    Google Scholar 

  97. Yang BY, Gray JSS, Montgomery R: The glycans of horseradish peroxidase. Carbohydr Res 287: 203–212 (1996).

    Google Scholar 

  98. Zablackis E, Huang J, Müller B, Darvill AG, Albersheim P: Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107: 1129–1138 (1995).

    Google Scholar 

  99. Zablackis E, York WS, Pauly M, Hantus S, Reiter WD, Chapple CCS, Albersheim P, Darvill A: Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur 1. Science 272: 1808–1810 (1996).

    Google Scholar 

  100. Zeng Y, Elbein AD: UDP-N-acetylglucosamine:dolicholphosphate N-acetylglucosamine-1–phosphate transferase is amplified in tunicamicyn-resistant soybean cells. Eur J Biochem 233: 458–466 (1995).

    Google Scholar 

  101. Zeng Y, Bannon G, Thomas Hayden V, Rice K, Drake R, Elbein A: Purification and specificity of β1, 2–xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J Biol Chem 272: 31340–31347 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Faye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerouge, P., Cabanes-Macheteau, M., Rayon, C. et al. N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38, 31–48 (1998). https://doi.org/10.1023/A:1006012005654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006012005654

Navigation