Skip to main content
Log in

The rationale and requirements for the development of boron neutron capture therapy of brain tumors

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The dismal clinical results in the treatment ofglioblastoma multiforme despite aggressive surgery, conventional radiotherapy, andchemotherapy, either alone or in combination has ledto the development of alternative therapeutic modalities. Amongthese is boron neutron capture therapy (BNCT). Thisbinary system is based upon two key requirements:(1) the development and use of neutron beamsfrom nuclear reactors or other sources with thecapability for delivering high fluxes of thermal neutronsat depths sufficient to reach all tumor foci,and (2) the development and synthesis of boroncompounds that can penetrate the normal blood-brain barrier,selectively target neoplastic cells, and persist therein forsuitable periods of time prior to irradiation. Theearlier clinical failures with BNCT related directly tothe lack of tissue penetration by neutron beamsand to boron compounds that showed little specificityfor and low retention by tumor cells, whileattaining high concentrations in blood. Progress has beenmade both in neutron beam and compound development,but it remains to be determined whether theseare sufficient to improve therapeutic outcomes by BNCTin comparison with current therapeutic regimens for thetreatment of malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wingo PA, Tong T, Bolden S: Cancer Statistics 1995. CA Cancer J Clin 45: 8–30, 1995

    Google Scholar 

  2. Prados MD, Wilson CB: Neoplasms of the central nervous system. In: Holland JF, Frei III E, Bast Jr RC, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer Medicine Vol. 1. Lea Febiger 1080–1119, 1993

  3. Barth RF: Biologic consideration in targeting brain tumors for boron neutron capture therapy. In: Mishima Y (ed) Cancer Neutron Capture Therapy. Plenum Press, New York, 533–540, 1996

    Google Scholar 

  4. Sano K: The future role of neurosurgery in the case of cerebral tumors. Neurosurg Rev 9: 13–22, 1986

    Google Scholar 

  5. Fulton DS, Urtasun RC, Scott-Brown I: Increasing radiation dose intensity using hyperfractionation in patients with malignant glioma. J Neuro-Oncol 14: 63–72, 1992

    Google Scholar 

  6. Larson DA, Sneed PK, Gutin PH: International brachytherapy for recurrent malignant gliomas. In: Karim ABMF, Laws Jr ER (eds) Glioma. Springer Verlag, Heidelberg 205–215, 1991

    Google Scholar 

  7. Warnke PC, Ostertag CB: Physiology of stereotactic interstitial radiosurgery. In: Amaldi V, Larsson B (eds) Hadrontherapy in Oncology. Elsevier, Amsterdam 657–663, 1994

    Google Scholar 

  8. Loeffler JS, Shrieve DC, Tarbell N, Alexander III E: External stereotactic radiation techniques for intracranial lesions. In: Kogelnik HD (ed) Progress in Radio-oncology V. Monduzzi, Bologna 389–396, 1995

    Google Scholar 

  9. Catterall M, Bloom HJG, Ash DV, Walsh L, Richardson A, Utley D, Goiving NFC, Lewis P, Chaucer B: Fast neutrons compared with megavoltage X-rays in the treatment of patients with supratentorial glioblastoma: a controlled pilot study. Int J Rad Oncol Biol Phys 6: 261–266, 1980

    Google Scholar 

  10. Laramore GE, Griffin TW, Gerdes AJ, Parker RG: Fast neutron and mixed (neutron/photon) BEA teletherapy for grades III and IV astrocytoma. Cancer 42: 96–103, 1978

    Google Scholar 

  11. Kurup PD, Payak TF, Nelson JS, Mansell J, Hendrickson FR, Cohen L, Griffin TW: Fast neutron therapy for malignant astocytomas. J Neuro-Oncol 4: 123–129, 1986

    Google Scholar 

  12. Laramore GE, Diener-West M, Griffin TW, Nelson JS, Griem ML, Thomas FG, Hendrickson FR, Griffin BR, Myrainthopoulas LC, Saxton J: Randomized neutron dose searching study for malignant gliomas of the brain: results of an RTOG study. Int J Rad Oncol Biol Phys 14: 1093–1102, 1988

    Google Scholar 

  13. Flowers A, Levin VA: Chemotherapy for brain tumors. In: Kaye H, Laws Jr ER (eds) Brain Tumors: An Encyclopedic Approach. Churchill Livingstone, Edinburgh 349–360, 1995

    Google Scholar 

  14. Neuwelt EA, Goldman DL, Dahlborgh SA, Crossen J, Ramsey F, Braziel R, Roman-Goldstein S, Braziel R, Dana B: Primary CNS lymphoma treated with osmotic bloodbrain barrier disruption: Prolonged survival and preservation of cognitive function. J Clin Oncol 9: 1580–1590, 1991

    Google Scholar 

  15. Salcman M: Experimental therapy for brain tumors. In: Kaye AH, Laws Jr ER (eds) Brain Tumors: An Encyclopedic Approach. Churchill Livingstone, Edinburgh 369–385, 1995

    Google Scholar 

  16. Sweet WH, Javid M: The possible use of slow neutrons plus boron10 in therapy of intracranial tumors. Trans Am Neurol Assoc 76: 60–63, 1951

    Google Scholar 

  17. Friedlander G, Kennedy JW, Macias ES, Miller JM: Nuclear and Radiochemistry, 3rd ed. John Wiley & Sons, New York 610–650, 1981

    Google Scholar 

  18. Godwin JT, Farr LE, Sweet WH, Robertson JS: Pathological study of 8 patients with glioblastoma multiforme treated by neutron capture therapy using boron10. Cancer 8: 601–615, 1955

    Google Scholar 

  19. Asbury AK, Ojemann RG, Nielsen SL, Sweet WH: Neuropathological study of 14 cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol 31: 278–303, 1971

    Google Scholar 

  20. Soloway AH, Hatanaka H, Davis MA: Penetration of brain and brain tumor: VII tumor-binding sulfhydryl boron compounds. J Med Chem 10: 714–717, 1967

    Google Scholar 

  21. Snyder HR, Reedy AJ, Lennarz WJ: Synthesis of aromatic boronic acids, aldehydo boronic acids and a boronic acid analog of tyrosine. J Am Chem Soc 80: 835–838, 1958

    Google Scholar 

  22. Fairchild RG, Saraf SK, Kalef-Ezra J, Laster BH: Comparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parameters. Med Phys 17: 1045–1052, 1990

    Google Scholar 

  23. Lemmen P, Werner B, Streiches B: Ether lipids as potential boron carriers for boron neutron capture therapy: synthesis of rac-1-(9-0-carboranyl)nonyl-2-methyl-glycero-3-phosphochilone (B-Et-11-OMe). In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 297–300, 1993

    Google Scholar 

  24. Wyzlic IM, Tjarks W, Soloway AH, Anisuzzaman AKM, Rong F-G, Barth RF: Strategies for the design and synthesis of boronated nucleic acid and protein components as potential delivery agents for neutron capture therapy. Int J Rad Oncol Biol Phys 28: 1203–1213, 1994

    Google Scholar 

  25. Rong F-G, Soloway AH: Synthesis of 5-tethered carborane-containing pyrimidine nucleosides as potential agents for DNA incorporation. Nucleosides + Nucleotides 13: 2021–2034, 1994

    Google Scholar 

  26. Kahl SB, Koo M-S: Synthesis and properties of tetrakis-carborane-carboxylate esters of 2,4-bis-(?m?-dihydroxyethyl) deuteroporphyrin IX. In: Allen BJ, Moore DE, Harrington BV (eds) Progress in Neutron Capture Therapy for Cancer. Plenum Press, New York 223–226, 1992

    Google Scholar 

  27. Tjarks W, Malmquist J, Gedda L, Sjöberg S, Carlsson J: Synthesis and initial biological evaluation of carborane-containing phenanthridinium derivatives. In: Mishima Y (ed) Cancer Neutron Capture Therapy, Plenum Press, New York, 121–126, 1996.

    Google Scholar 

  28. Scobie M, Threadgill MD: Synthesis of carborane-containing nitroimidazole compounds via mild 1,3-dipolar cycloaddition. J Chem Soc, Chem Comm 13: 939–941, 1992 s

    Google Scholar 

  29. Hariharan JR, Wyzlic IM, Soloway AH: Synthesis of novel boron-containing polyamines agents for DNA targeting in neutron capture therapy. Polyhedron 14: 823–825, 1995

    Google Scholar 

  30. Feakes DA, Shelly KJ, Hawthorne MF, Schmidt PG, Elstad CA, Meadows GG, Bauer WF: Liposomal delivery of boron to murine tumors for boron neutron capture therapy. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 395–398, 1993

    Google Scholar 

  31. Kahl SB, Pate DW, Waunschel LA: Low density lipoprotein reconstitutions with alkyl and aryl carboranes. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 399–402, 1993

    Google Scholar 

  32. Spielvogel BF, Sood A, Powell W, Tomasz J, Porter K, Shaw BR: Chemical and enzymatic incorporation of boron into DNA. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 389–393, 1993

    Google Scholar 

  33. Liu L, Barth RF, Adams DM, Soloway AH, Reisfeld RA: Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J Hematotherapy 4: 477–483, 1995

    Google Scholar 

  34. Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH, Fenstermaker RA, Carlsson J: Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjugate Chem 7: 7–15, 1996

    Google Scholar 

  35. Yang W, Barth RF, Carpenter DE, Moeschberger ML, Goodman JH: Enhanced delivery of boronophenylalanine by means of intracarotid injection and blood-brain barrier disruption for neutron capture therapy. Neurosurgery 38: 985–992, 1996

    Google Scholar 

  36. Rief H, Van Heusden R, Perlini G: Generating epithermal neutron beams for neutron capture therapy in small reactors. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 85–88, 1993

    Google Scholar 

  37. Liu HB, Brugger RM, Rorer DC, Tichler PR, Hu J-P: Design of a high flux neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor. Med Physics 21: 1627–1631, 1994

    Google Scholar 

  38. Maruyama Y, Wierzbicki J, Feola JM: Cf-252 neutrons for the treatment of superficial carcinomas. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 135–137, 1993

    Google Scholar 

  39. Wang CK, Blue TE, Gahbauer RA: A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy. Nucl Tech 84: 93–107, 1989

    Google Scholar 

  40. Yanch JC, Shefer RE, Hughey BJ, Klinkowstein RE: Accelerator-based epithermal neutron beams for neutron capture therapy. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 95–98, 1993

    Google Scholar 

  41. Gavin PR, DeHaan CE, Moore MP, Weidner JP, Swartz CD, Kraft SL, Atkinson CA, Amaro CR, Bauer WF, Siefert A: Large animal studies on the use of BNCT for the treatment of brain tumors. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York 469–475, 1993

    Google Scholar 

  42. Gavin PR, Kraft SL, Huiskamp R, Codesse JA: A review: CNS effects and normal tissue tolerance in dogs. J Neurooncol (in press)

  43. Gahbauer RA, Fairchild RG, Goodman JH, Blue TE: RBE in normal tissue studies. In: Gabel D, Moss R (eds) Neutron Capture Therapy. Plenum Press. New York, 123–128, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soloway, A.H., Barth, R.F., Gahbauer, R.A. et al. The rationale and requirements for the development of boron neutron capture therapy of brain tumors. J Neurooncol 33, 09–18 (1997). https://doi.org/10.1023/A:1005753610355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005753610355

Navigation