Skip to main content
Log in

Climate Change Policy Targets and the Role of Technological Change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In this paper, we present results of simulation experiments with the TIME-model on the issue of mitigation strategies with regard to greenhouse gases. The TIME-model is an integrated system dynamics world energy model that takes into account the fact that the system has an inbuilt inertia and endogenous learning-by-doing dynamics, besides the more common elements of price-induced demand response and fuel substitution. First, we present four scenarios to highlight the importance of assumptions on innovations in energy technology in assessing the extent to which CO2 emissions have to be reduced. The inertia of the energy system seems to make a rise of CO2 emissions in the short term almost unavoidable. It is concluded that for the population and economic growth assumptions of the IPCC IS92a scenario, only a combination of supply- and demand-side oriented technological innovations in combination with policy measures can bring the target of CO2-concentration stabilization at 550 ppmv by the year 2100 within reach. This will probably be associated with a temporary increase in the overall energy expenditures in the world economy. Postponing the policy measures will be more disadvantageous, and less innovation in energy technology will happen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AGGG: 1990, ‘Targets and Indicators of Climate Change’, Rijsberman and Swart (eds.), Report of Working Group II of the Advisory Group on Greenhouse Gases (AGGG), Stockholm Environmental Institute, Stockholm, Sweden.

    Google Scholar 

  • Alcamo, J. and Kreileman, E.: 1996, ‘Emission Scenarios and Global Climate Protection’, Global Environ. Change 6, 305-334.

    Article  Google Scholar 

  • Alcamo, J., Bouwman, A., Edmonds, J., Grübler, A., Morita, T., and Sugandhy, A.: 1995, ‘An Evaluation of the IPCC IS92 Emission Scenarios’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 1994, Cambridge University Press, Cambridge, U.K., Chapter 6.

    Google Scholar 

  • Arrow, K. J., Cline, W. R., Maler, K. G., Monasinghe, M., Squitieri, R., and Stiglitz, J. E.: 1996, ‘Intertemporal Equity, Discounting, and Economic Efficiency’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 1995: Economic and Social Dimensions of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 125-144.

    Google Scholar 

  • Azar, C. and Rodhe, H.: 1997, ‘Targets for Stabilization of Atmospheric CO2’, Science 276, 1818-1819.

    Article  CAS  Google Scholar 

  • Berk, M. M. and Janssen, M. A.: 1997, ‘The Interactive Scenario Scanner: A Tool to Support the Dialogue between Science and Policy on Scenario Development’, RIVM Report No. 481508005, Bilthoven, the Netherlands.

  • Bollen, J. C., Toet, A. M. C, de Vries, H. J. M., and van den Wijngaart, R. A.: 1995, ‘Modelling Regional Energy Use for Evaluating Global Climate Scenarios’, RIVM Report No. 481507010, Bilthoven, the Netherlands.

  • Chakravorty, U., Roumasset, J., and Tse, K.: 1997, ‘Endogenous Substitution among Energy Resources and Global Warming’, J. Polit. Econ. 105, 1201-1234.

    Article  Google Scholar 

  • Cline, W. R.: 1992, The Economics of Global Warming, Institute for International Economics, Washington, U.S.A.

    Google Scholar 

  • Davidson, P.: 1988, A Dynamic Petroleum Life-Cycle Model for the United States 1870-2050, MIT Sloan School of Management, Cambridge, MA.

    Google Scholar 

  • Den Elzen, M. G. J., Beusen, A. H.W., and Rotmans, J.: 1997, ‘An Integrated Modeling Approach to Global Carbon and Nitrogen Cycles: Balancing their Budgets’, Global Biogeochem. Cycles 11, 191-215.

    Article  CAS  Google Scholar 

  • De Vries, H. J. M. and Van Den Wijngaart, R.: 1995, ‘The Targets/IMage Energy Model (TIME)’, GLOBO Report Series No. 16, RIVM, Bilthoven, the Netherlands.

  • De Vries, H. J. M. and Janssen, M. A.: 1996, ‘Global Energy Futures: An Integrated Perspective with the TIME Model’, GLOBO Report Series No. 18, RIVM, Bilthoven, the Netherlands.

  • De Vries, H. J. M., Bollen, J. C., Den Elzen, M. G. J., Gielen, A., Janssen, M. A., Kreileman, G. J. J., and Olivier, J. G. J.: 1998, ‘IMAGE-Based Scenarios of Greenhouse-Gas Emissions for the Special Report on Emissions Scenarios (SRES)’, GLOBO Report Series No. 20, RIVM, Bilthoven, the Netherlands.

  • De Vries, H. J. M., Janssen, M. A., and Beusen, A.: 1999, ‘Perspectives on Global Energy Futures-Simulations with the TIME Model’, Energy Pol. 27, 477-494.

    Article  Google Scholar 

  • Grubb, M.: 1997, ‘Technologies, Energy Systems, and the Timing of CO2 Emissions Abatement: An Overview of Economic Issues’, Energy Pol. 25, 159-172.

    Article  Google Scholar 

  • Janssen, M. A.: 1998, Modelling Global Change: The Art of Integrated Assessment Modelling, Edward Elgar Publishing, Cheltenham U.K./Northampton, MA, U.S.A.

    Google Scholar 

  • Kassler: 1995, ‘Energy for Development’, Shell Selected Paper, Shell.

  • Lashof, D. A. and Ahuja, D. R.: 1990, ‘Relative Global Warming Potentials of Greenhouse Effect Emissions’, Nature 344, 529-531.

    Article  CAS  Google Scholar 

  • Messner, S.: 1997, ‘Endogenized Technological Learning in an Energy Systems Model’, J. Evol. Econ. 7, 291-313.

    Article  Google Scholar 

  • Naill, R.: 1977, Managing the Energy Transition-A Systems Dynamics Search for Alternatives to Oil and Gas, Ballinger, Cambridge, MA.

    Google Scholar 

  • Nordhaus, W. D.: 1994, Managing the Global Commons: The Economics of Climate Change, MIT Press, Cambridge, MA, U.S.A.

    Google Scholar 

  • Repetto, R. and Austin, D.: 1997, The Costs of Climate Protection: A Guide for the Perplexed, World Resource Institute, Washington, D.C., U.S.A.

    Google Scholar 

  • Rotmans, J. and De Vries, H. J. M. (eds.): 1997, Perspectives on Global Change: The TARGETS Approach, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Schneider, S. H. and Goulder, L. H.: 1997, ‘Achieving Low-Cost Emissions Targets’, Nature 389, 13-14.

    Article  CAS  Google Scholar 

  • Sterman, J. D.: 1981, ‘The Energy Transition and the Economy: A System Dynamics Approach' (2 Vols.), MIT Alfred P. Sloan School of Management.

  • United Nations (UN): 1992, ‘Framework Convention on Climate Change’, United Nations, New York.

    Google Scholar 

  • Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and Environmental Choices in the Stabilization of Atmospheric CO2 Concentrations’, Nature 379, 240-243.

    Article  CAS  Google Scholar 

  • Williams, R. H.: 1995, Variants of a Low CO 2 -Emitting Energy Supply System (Less) for the World, PNL-10851, Pacific Northwest Laboratories, Richland, WA, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, M.A., de Vries, B. Climate Change Policy Targets and the Role of Technological Change. Climatic Change 46, 1–28 (2000). https://doi.org/10.1023/A:1005661220604

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005661220604

Keywords

Navigation