Skip to main content
Log in

A Novel Antifungal Furanone from Pseudomonas aureofaciens, a Biocontrol Agent of Fungal Plant Pathogens

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pseudomonas aureofaciens (= P. chlororaphis) strain 63-28 is a biocontrol agent active against many soil-borne fungal plant pathogens and shows antifungal activity in culture assays. 3-(1-Hexenyl)-5-methyl-2-(5H)furanone was isolated from culture filtrates of this bacterium. The purified furanone showed antifungal activity against Pythium ultimum, Fusarium solani, Fusarium oxysporum, and Thielaviopsis basicola. The ED50S for spore germination of these fungi were 45, 54, 56, and 25 μg/ml, respectively. The compound also inhibited the germ tube growth of Rhizoctonia solani growing from microsclerotia, with an ED50 of 61 μg/ml. The compound is the reduced form of furanones previously described from this bacterium: 3-(1-hexenyl)-5-hydroxy-5-methyl-2-(5H)-furanone and 3-(1-hexenyl)-5-hydroxymethyl-2-(5H)-furanone. This volatile antifungal furanone has structural similarity to other antifungal furanones produced by actinomycetes (Streptomyces spp.), fungi (Trichoderma harzianum), and higher plants (Pulsatilla and Ranuculus spp.). This is the first report of 3-(1-hexenyl)-5-methyl-2-(5H)-furanone produced by a bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Almassi, F., Ghisalberti, E. L., and Narbey, M. 1991. New antibiotics from strains of Trichoderma harzianum. J. Nat. Prod. 54:396–402.

    Google Scholar 

  • Benhamou, N., BÉlanger, R. R., and Paulitz, T. C. 1996. Pre-inoculation of Ri T-DNA-transformed pea roots with Pseudomonas fluorescens inhibits colonization by Pythium ultimum Trow: An ultrastructural and cytochemical study. Planta 199:105–117.

    Google Scholar 

  • Braun, D., Pauli, N., SÉquin, U., and ZÅhner, H. 1995. New butenolides from the photoconductivity screening of Streptomyces antibioticus (Waksman and Woodruff) Waksman and Henrici 1948. FEMS Microbiol. Lett. 126:37–42.

    Google Scholar 

  • Christie, W. W. 1982. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids, 2nd ed. Pergamon Press, Oxford, p. 79.

    Google Scholar 

  • Chun, W., Cui, J., and Poplawsky, A. 1997. Purification, characterization and biological role of a pheromone produced by Xanthomonas campestris pv. campestris. Physiol. Mol. Plant Pathol. 51:1–14.

    Google Scholar 

  • Dal Pozzo, A., Dansi, A., Mariotti, V., and Meneghini, E. 1972. Boll. Chim. Farm. 111:342–352.

    Google Scholar 

  • Els, H., Sobin, B. A., and Celmer, W. D. 1958. PA-147 (3-carboxy-4-pentadienal lactol)—a new antibiotic. J. Am. Chem. Soc. 80:878–880.

    Google Scholar 

  • GagnÉ, S., Dehbi, L., Le quÉrÉ, D., Cayer, F., Morin, J.-L., Lemay, R., and Fournier, N. 1993. Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growth media. Soil Biol. Biochem. 25:269–273.

    Google Scholar 

  • Gamard, P., Bel-Rhlid, R., LabbÉ, C., BÉlanger, R., and Paulitz, T. 1996. Production of multiple antifungal compounds by PGPR strains of Pseudomonas fluorescens and Serratia plymuthica. Can. J. Plant Pathol. 18:89.

    Google Scholar 

  • Gamard, P., Sauriol, F., Benhamou, N., BÉlanger, R. R., and Paulitz, T. C. 1997. Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63–28. J. Antibiot. 50:742–749.

    Google Scholar 

  • Hill, D. J., and Peng, G. 1999. Evaluation of AtEze for suppression of fusarium wilt of chrysanthemum. Can. J. Plant Pathol. 21:194–195.

    Google Scholar 

  • Hisao, Y. 1966. Antimicrobial activity of crotonic acid. I. Influence of crotonic acid on the growth of molds. Hakko Kogaku Zasshi 44:210–215.

    Google Scholar 

  • Horinouchi, S., and Beppu, T. 1994. A factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol. Microbiol. 12:859–864.

    Google Scholar 

  • Howell, C. R., and Stipanovic, R. D. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715.

    Google Scholar 

  • Kelemen, G. H., and Buttner, M. J. 1998. Initiation of aerial mycelium formation in Streptomyces. Curr. Opin. Microbiol. 1:656–662.

    Google Scholar 

  • King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301–307.

    Google Scholar 

  • Lifshitz, R., Windham, M. T., and Baker, R. 1986. Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76:720–725.

    Google Scholar 

  • Lorenzen, K., Anke, T., Konetschny-Rapp, S., and Scheuer, W. 1995. 5-Hydroxy-3-vinyl-2(5H)-furanone—a new inhibitor of human synovial phospholipase A2 and platelet aggregation from fermentations of a Calyptella species (Basidiomycetes). Z. Naturforsch. 50:403–409.

    Google Scholar 

  • Lorimer, S. D., Mawson, S. D., Perry, N. B., and Weavers, R. T. 1995. Isolation and synthesis of β-miroside, and antifungal furanone glucoside from Prumnopitys ferruginea. Tetrahedron 51:7287–7300.

    Google Scholar 

  • Mares, D. 1987. Antimicrobial activity of protoanemonin, a lactone from ranunculaceous plants. Mycopathologia 98:133–140.

    Google Scholar 

  • Mares, D. 1989. Electron microscopy of Microsporum cookei after “in vitro” treatment with protoanemonin: A combined SEM and TEM study. Mycopathologia 108:37–46.

    Google Scholar 

  • Mares, D., and Fasulo, M. P. 1990. Ultrastructural alterations in Epidermophyton floccosum and Trichophyton mentagrophytes exposed in vitro to protoanemonin. Cytobios 61:89–95.

    Google Scholar 

  • Martin, M. L., San Roman, L., and Dominguez, A. 1990. In vitro activity of protoanemonin, and antifungal agent. Planta Med. 56:66–69.

    Google Scholar 

  • Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Hass, D., and DÉfago, G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology 82:190–195.

    Google Scholar 

  • McCullagh, M., Utkhede, R., Menzies, J., Punja, Z., and Paulitz, T. C. 1996. Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. Eur. J. Plant Pathol. 102:747–755.

    Google Scholar 

  • Misra, S. B., and Dixit, S. N. 1980. Antifungal principle of Ranunculus sceleratus. Econ. Bot. 34:362–367.

    Google Scholar 

  • Ordentlich, A., Wiesman, Z., Gottlieb, H. E., Cojocaru, M., and Chet, I. 1992. Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31:485–486.

    Google Scholar 

  • Pfender, W. F., Kraus, J., and Loper, J. E. 1993. A genomic region form Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83:1223–1228.

    Google Scholar 

  • Pierson, L. S., Wood, D. W., and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36:207–225.

    Google Scholar 

  • Rezanka, T., LÍbalovÁ, D., Votruba, J., and VÍden, I. 1994. Identification of odorous compounds from Streptomyces avermitilis. Biotechnol. Lett. 16:75–78.

    Google Scholar 

  • Sakurai, K., Matsumoto, H. and Adachi, J. 1968. Antifungal studies on drugs. I. Antifungal activity of five-membered lactone derivatives. Yakugaku Zasshi 88:919–924.

    Google Scholar 

  • Seresinhe, N., Reyes, A. A., and Brown, G. L. 1997. Suppression of rhizoctonia stem rot on poinsettias with Pseudomonas aureofaciens, strain 63–28. Can. J. Phytopathol. 19:116.

    Google Scholar 

  • Seto, H., Watanabe, H., and Furihata, K. 1996. Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenyl diphosphate in Streptomyces aeriouvifer. Tetrahedron Lett. 37:7979–7982.

    Google Scholar 

  • Thomashow, L. S., and Weller, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499–3508.

    Google Scholar 

  • Thomashow, L. S., and Weller, D. M. 1996. Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites, pp. 187–235, in G. Stacey and N. T. Keen (ed.). Plant-Microbe Interactions, Vol. 1. Chapman & Hall, New York.

    Google Scholar 

  • Van Bruggen, A. H. C., and Arneson, P. A. 1986. Quantitative recovery of Rhizoctonia solani from soil. Plant Dis. 70:320–323.

    Google Scholar 

  • Wu, G., Wu, Y., Zhang, C., Wang, Z., and Zhang, G. 1995. Control of wheat scab with an alkyl derivative of γ-methylene-γ-butyrolactone. Zhongguo Kexue Jishu Daxue Xuebao 25:382–386.

    Google Scholar 

  • Yamada, Y., Sugamura, K., Kondo, K., Yanagimoto, M., and Okada, H. 1987. The structure of inducing factors of virginiamycin production in Streptomyces virginiae. J. Antibiot. 40:496–504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulitz, T., Nowak-Thompson, B., Gamard, P. et al. A Novel Antifungal Furanone from Pseudomonas aureofaciens, a Biocontrol Agent of Fungal Plant Pathogens. J Chem Ecol 26, 1515–1524 (2000). https://doi.org/10.1023/A:1005595927521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005595927521

Navigation