Skip to main content
Log in

Potential Effects of Climate Change on Two Neotropical Amphibian Assemblages

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Although anuran amphibians are diverse and conspicuous in many vertebrate communities, worldwide population declines have been observed. Climatic change is a global factor that has been implicated in some of these declines. In this paper, we speculate on how Neotropical anurans might respond to changes in climate predicted by Hulme and Viner (1998). We focus on two distinct groups of Neotropical anurans: frogs that live and oviposit in leaf litter and frogs that congregate at ponds to breed. Increased temperature, increased length of dry season, decreased soil moisture, and increased inter-annual rainfall variability will affect Neotropical frogs strongly. We expect that these changes will directly affect frogs by changing reproductive success and breeding periodicity, and indirectly by altering the invertebrate prey base. The individual effects will likely translate into changes at the population and community levels. We also speculate on how climatic change will affect Neotropical amphibians that are restricted ecologically and/or geographically. We suggest directions for future research that will increase our ability to predict how amphibians in the New World tropics will respond to climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aichinger, M.: 1987, ‘Annual activity patterns of anurans in a seasonal Neotropical environment’, Oecologia 71, 583–592.

    Google Scholar 

  • Allan, J.D., and Flecker, A.S.: 1993, ‘Biodiversity conservation in running waters’, Bioscience 43, 32–43.

    Google Scholar 

  • Auth, D.L.: 1994, ‘Checklist and bibliography of the amphibians and reptiles of Panama’, Smithsonian Herpetological Information Service 98, 1–59.

    Google Scholar 

  • Bachmann, K.: 1969, ‘Temperature adaptations of amphibian embryos’. Am. Nat. 103, 115–130.

    Google Scholar 

  • Barinaga, M.: 1990, ‘Where have all the froggies gone?’, Science 247, 1033–1034.

    Google Scholar 

  • Beattie, R.C., and Tyler-Jones, R.: 1992, ‘The effects of low pH and aluminum on breeding success in the frog Rana temporaria’, J. Herpetol. 26, 353–360.

    Google Scholar 

  • Beebee, T.J.C.: 1977, ‘Environmental change as a cause of Natterjack toad (Bufo calamita)declines in Britain’, Biol. Conserv. 11, 87–102.

    Google Scholar 

  • Beebee, T.J.C.: 1995, ‘Amphibian breeding and climate’, Nature 374, 219–220

    Google Scholar 

  • Beebee, T.J.C., Flower, R.J., Stevenson, A.C., Patrick, S.T., Appleby, P.G., Fletcher, C., Marsh, C., Natkanski, J., Rippey, B., and Battarbee, R.W.: 1990, ‘Decline of the Natterjack toad Bufo calamita in Britain: paleoecological, documentary, and experimental evidence for breeding site acidification’, Biol. Conserv. 53, 1–20.

    Google Scholar 

  • Berven, K.A.: 1990, ‘Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica)’. Ecology 71, 1599–1608.

    Google Scholar 

  • Berven, K.A,, Gill, D.E., and Smith-Gill, S.J,: 1979, ‘Counter-gradient selection in the green frog, Rana clamitans’,Evolution 33, 609–623.

    Google Scholar 

  • Bider, J.R., and Morrison, K.A.: 1981, ‘Changes in the toad (Bufo americanus) responses to abiotic factors at the northern limit of their distribution’, Am. Mid. Nat. 106, 293–304.

    Google Scholar 

  • Blaustein, A.R.: 1994, ‘Chicken Little or Nero’s fiddle? A perspective on declining amphibian populations’, Herpetologica 50, 85–97.

    Google Scholar 

  • Blaustein, A.R., and Wake, D.B.: 1990a, ‘Declining amphibian populations: a global phenomenon?, TREE 5 , 203–204.

    Google Scholar 

  • Blaustein, A.R., and Wake, D.B,: 1990b, ‘Declining amphibian populations-a global phenomenon’. Bull. Ecol. Soc. Amer. 71, 127–128.

    Google Scholar 

  • Blaustein, A.R., Hoffman, P.D., Hokit, D.G., Kiesecker, J.M., Walls, S.C., and Hays, J.R., 1994a, ‘UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines?’, Proc. Nat. Acad. Sci. 91, 1791–1795.

    Google Scholar 

  • Blaustein, A.R., Hokit, D.G" O'Hara, R.K., and Holt, R.A.: 1994b, ‘Pathogenic fungus contributes to amphibian losses in the Pacific northwest’, Biol. Conserv. 67, 251–254.

    Google Scholar 

  • Blaustein, A.R., Wake, D.B., and Sousa, W.P.: 1994c, ‘Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions’, Conserv. Boil. 8 , 60–71.

    Google Scholar 

  • Blaustein, A.R., Edmond, B., Kiesecker, J.M., and Hokit, D.G.: 1995a, ‘Ambient ultraviolet radiation causes mortality in salamander eggs’, Ecol. Appl. 5, 740–743.

    Google Scholar 

  • Blaustein, A.R., Kiesecker, J.M., Hokit, D.G., and Walls, S.C.: 1995b, ‘Amphibian declines and ultraviolet radiation’. Bioscience 45, 514–515

    Google Scholar 

  • Blaustein, A.R., Hoffman, P.D., Kiesecker, J.M, and Hays, J.B.: 1996, ‘DNA repair activity and resistance to solar UV-B radiation in eggs of the red-legged frog’, Conserv. Biol. 10, 1398–1402.

    Google Scholar 

  • Borchelt, R.: 1990, ‘Frogs, toads, and other amphibians in distress’, Nat Res. Council News Rept. 40, 2–5.

    Google Scholar 

  • Bradford, D.F.: 1989, ‘Allotopic distribution of native frogs and introduced fishes in high Sierra Nevada lakes of California: implications of the negative effect of fish introductions’, Copeia 1989, 775–778.

    Google Scholar 

  • Bradford, D.F.: 1991, ‘Mass mortality and extinction in a high-elevation population of Rana muscosa’, J. Herpetol. 25 , 174–177.

    Google Scholar 

  • Bragg, A.N.: 1960, ‘Population fluctuations in the amphibian fauna of Cleveland county, Oklahoma during the past 25 years’, Southwest. Nat. 5 , 165–169.

    Google Scholar 

  • Burton, T.M., and Likens, G.E.: 1975a, ‘Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire’, Copeia 1975, 541–546.

    Google Scholar 

  • Burton, T.M., and Likens, G.E.: 1975b, ‘Energy flow and nutrient cycling in salamander populations in the Hubbard Brook experimental forest, New Hampshire’, Ecology 56,1068–1080.

    Google Scholar 

  • Caldwell, J.P.: 1996, ‘The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae)’, J. Zool. Lond. 240, 75–101.

    Google Scholar 

  • Cardoso, A.J.: 1981, ‘Organizaçãao espacial e temporal na reprodução e vida larvária em uma comunidade de hilídeos no sudeste do Brasil’, Dissertation, Institute de Biologia da Universidade Estadual de Campinas, Campinas.

  • Carey, C.: 1993, ‘Hypothesis concerning the causes of the disappearaace of Boreal Toads from the mountains of Colorado’, Conserv. Biol. 7 , 355–362.

    Google Scholar 

  • Carey, C., and Bryant, C.J.: 1995, ‘Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations’, Environ. Health Perspect. 103(suppl. 4), 13–17.

    Google Scholar 

  • Coloma, L.A.: 1995, ‘Ecuadorian frogs of the genus Colostethus (Anura: Dendrobatidae)’, Univ. Kansas Mus. Nat. Hist. Misc. Publ. 87, 1–72 + 3 plates.

    Google Scholar 

  • Cooke, A.S.: 1972, Indications of recent changes in the status in the British Isles of the frog (Rana temporaria) and the toad (Bufo bufo)’, J. Zool. 167, 161–178.

    Google Scholar 

  • Cooke, A.S., 1982, ‘A comparison of dates of breeding activity for the frog (Rana temporaria)and the toad (Bufo bufo) at a site in Cambridgeshire, 1971-1981’, Br.J. Herpetol. 6, 202–205.

    Google Scholar 

  • Cooke, A.S., and Ferguson, P.F.: 1976, ‘Changes in the status of the frog (Rana temporaria)and the toad (Bufu bufo) on part of the East Anglican fenland in Britain’, Biol. Conserv. 9 , 191–198.

    Google Scholar 

  • Corn, P.S., and Fogleman, J.C.: 1984, ‘Extinction of montane populations of the northern leopard frog (Rana pipiens) in Colorado’, J. Herpetol. 18, 147–152.

    Google Scholar 

  • Crawshaw, G.J.: 1992, The role of disease in amphibian decline’, In: Bishop, C.A., and Pettit, K.E. (eds.), Declines in Canadian amphibian populations: designing a national monitoring strategy, Occ. Pap. Canadian Wildl. Serv. 76, 60–62.

  • Crump, M.L.: 1974, ‘Reproductive strategies in a tropical anuran community’, Univ. Kansas Mus. Nat. Hist. Occ. Pap. 3, 1–62.

    Google Scholar 

  • Crump, M.L.: 1995, ‘Parental care’. In: Heatwole, H., and Sullivan, B.K. (eds.), Amphibian Biology, Vol II., Surrey Beatty & Sons, Pty. Ltd., Chipping Norton, p. 518–567.

    Google Scholar 

  • Crump, M.L., and Pounds, J.A,: 1989, ‘Temporal variation in the dispersion of a tropical anuran’, Copeia 1989, 209–211.

    Google Scholar 

  • Clump, M.L., Hensley, F.R., and Clark, K.L.: 1992, ‘Apparent decline of the Golden Toad: underground or extinct?’, Copeia 1992, 413–420.

    Google Scholar 

  • Cunningham, A.A., Langton, T.E.S., Bennett, P.M., Drury, S.E.N., Gough, R.E., and Kirkwond, J.K.: 1993, ‘Unusual mortality associated with poxvirus-like particles in frogs (Rana temporaria)’, Vet. Record 133, 141–142.

    Google Scholar 

  • Cunningham, J.D.: 1960, ‘Aspects of the ecology of the Pacific slender salamander, Batrachoceps pacificus, in southern California’, Ecology 41, 88–99.

    Google Scholar 

  • Donnelly, M.A.: 1989, ‘Reproductive phenology and age structure of Dendrobates pumilio in northeastern Costa Rica’, J. Herpetol. 23, 362–367.

    Google Scholar 

  • Donnelly, M.A.: 1991, ‘Feeding patterns of the strawberry poison frog, Dendrobates pumilio(Anura: Dendrobatidae)’, Copeia 1991, 723–730.

    Google Scholar 

  • Donnelly, M.A.: 1994, ‘Amphibian diversity and natural history’, In: McDade, L.A., Bawa, K.S., Hespenheide, H.A., and Hartshorn, G.S. (eds.), La Selva: ecology and natural history of a Neotropical rainforest, Univ. Chicago Press, Chicago, pp. 199–209.

    Google Scholar 

  • Donnelly, M.A. and Guyer, C.: 1994, ‘Patterns of reproduction and habitat use in an assemblage of Neotropical hylid frogs’, Oecologia 98 , 291–302.

    Google Scholar 

  • Drost, C.A. and Fellers, G.M.: 1996, ‘Collapse of a regional frog fauna in the Yosemite area of the California Sierra Nevada, USA. Conserv. Biol. 10, 414–425.

    Google Scholar 

  • Duellman, W.E.: 1990, ‘Herpetofaunas in Neotropical rainforests: comparative composition, history and resource use’. In: Gentry, A.H. (ed.), Four Neotropical Forests, Yale Univ. Press, New Haven, pp. 455–505.

    Google Scholar 

  • Duellman, W.E., and Trueb, L.: 1986, ‘Biology of Amphibia’, McGraw-Hill, New York.

    Google Scholar 

  • Dunson, W.A., Wyman, R.L., and Corbelt, E.S.: 1992, ‘A symposium on amphibian declines and habitat acidification’, J. Herpetol. 26, 349–352.

    Google Scholar 

  • Feder, M.E.: 1978, ‘Environmental variability and thermal acclimation in Neuteropical and temperate zone salamanders’, Physiol. Zool. 51, 7–16.

    Google Scholar 

  • Fellers, G.M., and Drost, C.A.: 1993, ‘Disappearance of the Cascades frog Rana cascadae at the southern end of its range, California, USA’, Biol. Conserv. 65, 177–181.

    Google Scholar 

  • Fetcher, N., Oberbauer, S.F., and Strain, B.R.: 1985, ‘Vegetation effects on microclimate in lowland tropical forest in Costa Rica’, Int. J. Biometerol. 29, 145–155.

    Google Scholar 

  • Fisher, R.N., and Shaffer, H.B.: 1996. ‘The decline of amphibians in California’s Great Central Valley’, Conserv. Biol. 10, 1387–1397.

    Google Scholar 

  • Frost, D.R. (ed.): 1985, ‘Amphibian Species of the World’, Allen Press and Assoc. Syst. Collections, Lawrence.

    Google Scholar 

  • Frost, D.R. (ed.): 1995, ‘Amphibian Species of the World’, 24 May 1995 version, Electronic manuscript being compiled under the auspices of the Herpetologists’ League.

  • Galatti, U.: 1992, ‘Population biology of the frog Leptodactylus pentadactylus in a central Amazonian rainforest’, J. Herpetol. 26 , 23–31.

    Google Scholar 

  • Gamradt, S.C. and Kats, L.B,: 1996, ‘Effect of introduced crawfish and mosquitofish on California newts’, Conserv. Biol. 10, 1155–1162.

    Google Scholar 

  • Gascon, C.: 1991, ‘Population-and community-level analyses of species occurrences of central Amazonian rainforest tadpoles’, Ecology 72, 1734–1746.

    Google Scholar 

  • Grimm, N.B.: 1993, Implications of climate change for stream communities’. In: Kareiva, P.M., Kingsolver, J.G., and Huey, R.B. (eds.), Biotic Interactions and Global Change,Sinauer Associates, Inc., Sunderland, pp. 293–314.

    Google Scholar 

  • Guyer, C.: 1990, The herpetofauna of La Selva, Costa Rica’, In: Gentry A.H. (ed.), Four Neotropical Forests, Yale Univ. Press, New Haven, pp. 371–385.

    Google Scholar 

  • Hairston, N.G., Sr., and Wiley, R.H.: 1993, ‘No decline in salamander (Amphibia: Caudata) populations: a twenty-year study in the southern Appalachians’, Brimleyana 18, 59–64.

    Google Scholar 

  • Hammerson, G.A.: 1982, ‘Bullfrogs eliminating leopard frogs in Colorado?’, Herpetol. Rev. 13, 115–116.

    Google Scholar 

  • Harte, J. and Hoffman, E.: 1989, ‘Possible effects of acidic deposition on a Rocky Mountain population of the tiger salamander Ambystoma tigrinum’, Conserv. Biol. 3, 149–158.

    Google Scholar 

  • Hayes, M.P., and Jennings, M.R.: 1986, ‘Decline of ranid species in western North America: are bullfrogs responsible?’, J. Herpetol. 20, 490–509.

    Google Scholar 

  • Herman, C.A.: 1992, ‘Endocrinology’, In: Feder, M.E. and Burggren, W.W. (eds.). Environmental Physiology of the Amphibians, Univ. Chicago Press, Chicago, pp. 40–54.

    Google Scholar 

  • Herman, T.B. and Scott, F.W.: 1992, ‘Assessing the vulnerability of amphibians to climatic warming’. In: Bishop, C.A., and Pettit, K.E. (eds.), Declines in Canadian amphibian populations: designing a national monitoring strategy, Occ. Pap. Canadian Wildl. Serv. 76,46–49.

  • Heyer, W.R., Rand, A.S., Cruz, C.A.G., and Peixoto, O.L.; 1988, Decimations, extinctions, and colonizations of frog populations in southeast Brazil and their evolutionary implications’, Biotropica 20 , 230–235.

    Google Scholar 

  • Hock, R.J.: 1967, ‘Temperature effect on breeding of the toad, Bufo variegatus, in southern Chile’, Copeia 1967, 227–230.

    Google Scholar 

  • Hoffmann, A.A., and Blows, M.W.: 1993, ‘Evolutionary genetics and climate change: will animals adapt to global warming?’, In: Kareiva, P.M., Kingsolver, J.G., and Huey, R.B. (eds.), Biotic Interactions and Global Change, Sinauer Associates, Inc., Sunderland, pp. 165–178.

    Google Scholar 

  • Hulme, M., and Viner, D.: 1998, ‘A climate change scenario for the tropics’, Climatic Change 39 (this volume).

  • Hutchinson, V.H., and Dupré, R.K.: 1992, ‘Thermoregulation’, In: Feder, M.E. and Burggren, W.W. (eds.), Environmental Physiology of the Amphibians, Univ. Chicago Press, Chicago, pp. 206–249.

    Google Scholar 

  • Jaeger, R.G.: 1978, ‘Plant climbing by salamanders: Periodic availability of plant-dwelling prey’, Copeia 1978, 686–691.

    Google Scholar 

  • Jaeger, R.G.: 1980, ‘Microhabitats of a terrestrial forest salamander’, Copeia 1980, 265–268.

    Google Scholar 

  • Jennings, W.B., Bradford, D.E., and Johnson, D.F.: 1992, ‘Dependence of the garter snake Thamnophis elegans on amphibians in the Sierra Nevada of California’, J. Herpetol. 26,503–505

    Google Scholar 

  • Jorgensen, C.B.: 1992, ‘Growth and reproduction’, In: Feder, M.E. and Burggren, W.W. (eds.), Environmental Physiology of the Amphibians, Univ, Chicago Press, Chicago, pp. 439–466.

    Google Scholar 

  • Jorgensen, C.B., Shakuntala, K., and Vijayakumar, S.: 1986, ‘Body size, reproduction and growth in a tropical toad, Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans’, Oikos 46 , 379–389

    Google Scholar 

  • Kiesecker, J.M., and Blaustein, A.R.: 1995. ‘Synergism between UV-B radiation and a pathogen magnifies amphibian embryo mortality in nature’, Proc. Nat. Acad. Sci. 92, 11049–11052.

    Google Scholar 

  • Kiesecker, J.M., and Blaustein, A.R.: 1997, Influences of egg laying behavior on pathogenic infection of amphibian eggs’, Conserv. Biol. 11, 214–220.

    Google Scholar 

  • Kirk, J.J.: 1988, ‘Western spotted frog (Rana pretiosa) mortality following forest spraying of DDT’, Herpetol. Rev. 19, 51–53.

    Google Scholar 

  • LaMarca, E., and Reinthaler, H.P.: 1991, ‘Population changes in Atelopus species of the Cordillera de Mérida, Venezuela’, Herpetol. Rev. 22, 125–128.

    Google Scholar 

  • Lamotte, M.: 1983, ‘Amphibians in savanna ecosystems’. In: Bourliere, F. (ed.), Ecosystems of the World: 13 Tropical Savannas, Elsevier, Amsterdam, pp. 313–323.

    Google Scholar 

  • Laurance, W.F., McDonald, K.R., and Speare, R.: 1996, ‘Epidemic disease and the catastrophic decline of Australian rain forest frogs’, Conserv. Biol. 10, 406–413.

    Google Scholar 

  • Layne, J.R., and Claussen, D.L.: 1982, ‘Seasonal variation in the thermal acclimation of critical thermal maxima (CTMax) and minima (CTMin) in the salamander Eurycea bislineata’, J. Therm. Biol. 7, 29–34.

    Google Scholar 

  • Levings, S.C., and Windsor, D.M.: 1982, ‘Seasonal and annual variation in litter arthropod populations’, in: Leigh, E.G., Jr., Rand, A.S., and Windsor, D.M. (eds.), The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes, Smithsonian Instit. Press, Washington, D.C., pp. 335–387.

    Google Scholar 

  • Lieberman, S.S.: 1986, ‘Ecology of the leaf-litter herpetofauna of a Neotropical rainforest: La Selva, Costa Rica’, Acta Zool. Mexicana 15, 1–72.

    Google Scholar 

  • Lieberman, S.S., and Dock, C.F.: 1982, ‘Analysis of the leaf-litter arthropod fauna of a lowland tropical evergreen forest site (La Selva, Costa Rica)’, Rev. Biol. Trop. 30, 27–34.

    Google Scholar 

  • Lips, K.R.: in press, ‘Decline of a tropical montane amphibian fauna’, Conserv. Biol.

  • Liss, W.J., and Larson, G.L.: 1991, ‘Ecological effects of stocked trout on North Cascades naturally fishless lakes’. Park Sci. 11, 22–23.

    Google Scholar 

  • MeDiarmid, R.W.: 1992, ‘Standard methods for measuring and monitoring biological diversity of amphibians’. In: Bishop, C.A., and Pettit, K.E. (eds.), Declines in Canadian amphibian populations: designing a national monitoring strategy, Occ. Pap. Canadian Wildl. Serv.76, 80–82.

  • Miles, D.B.: 1994, ‘Population differentiation in locomotor performance and the potential response of a terrestrial organism to global environmental change’, Amer. Zool. 34, 422–436.

    Google Scholar 

  • Moyle, P.R.: 1973, ‘Effects of introduced bullfrogs, Rana catesbeiana, on the native frogs of the San Joaquin Valley, California’, Copeia 1973, 18–22.

    Google Scholar 

  • Newman, R.A.: 1988, ‘Adaptive plasticity in development of Scaphiopus couchii Tadpoles in desert ponds’, Evolution 42, 774–783.

    Google Scholar 

  • Pechmann, J.H.K., and Wilbur, H.M.: 1994, ‘Putting declining amphibian populations in perspective: natural flucluations and human impacts’, Herpetologica 50, 65–84.

    Google Scholar 

  • Pechmann, J.H.K., Scott, D.E., Semlitsch, R.D., Caldwell, J.P., Vitt, L.J., and Gibbons, J.W.: 1991, ‘Declining amphibian populations: the problem of separating human impacts from natural fluctuations’, Science 253 , 892–894.

    Google Scholar 

  • Petranka, J.W., Eldridge, M.E., and Haley, K.E.: 1993, ‘Effects of timber harvesting on southern Appalachian salamanders’, Conserv. Biol. 7, 363–370.

    Google Scholar 

  • Phillips, K.: 1990, ‘Where have all the frogs and toads gone?’. Bioscience 40, 422–424.

    Google Scholar 

  • Pounds, J.A., and Cruillp, M.L., 1987, ‘Harlequin frogs along a tropical montane stream: aggregation and the risk of predation by frog-eating flies’, Biotropica 19, 306–309.

    Google Scholar 

  • Pounds, J.A., and Crump, M.L.: 1994, ‘Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog’, Conserv. Biol. 8, 72–85.

    Google Scholar 

  • Pough, F.H.: 1974, ‘Natural daily temperature acclimation of eastern red efts, Notophthalmus v. viridescens (Rafinesque) (Amphibia: Caudata)’, Comp. Biochem. Physiol. 47A, 71–78.

    Google Scholar 

  • Pough, F.H., Stewart, M.M., and Thomas, R.G.: 1977, ‘Physiological basis of habitat partitioning in Jamaican Eleutherodactylus’, Oecologia 27 , 285–293.

    Google Scholar 

  • Pough, F.H., Taigen, T.L., Stewart, M.M. and Bussard, P.F.: 1983, ‘Behavioral modification of evaporative water loss by a Puerto Rican Frog’, Ecology 64, 244–232.

    Google Scholar 

  • Power, T., Clark, K.L., Harfenist, A., and Peakall, D.B.: 1989, ‘A review and evaluation of the amphibian toxicological literature’, Tech, Rep. Ser. No. 61, Canadian Wildl. Serv.

  • Rabb, G.B., 1990, ‘Declining amphibian populations’, Species 13-14, 33–34.

    Google Scholar 

  • Richards, S.J., McDonald, K.R., and Alford, R.A.: 1993, ‘Declines in populations of Australia’s endemic tropical rainforest frogs’, Pac. Conserv. Biol. 1, 66–77.

    Google Scholar 

  • Rome, L.C., Stevens,E.D, John-Alder, H.B.: 1992, ‘The influence of temperature and thermal acclimation on physiological function’. In: Feder, M.E. and Burggren, W.W. (eds.). Environmental Physiology of the Amphibians, Univ. Chicago Press, Chicago, pp. 183–205.

    Google Scholar 

  • Savage, J.M.: 1982, ‘The enigma of the Central American herpetofauna: dispersals or vicariance?’, Ann. Missouri Bot. Gard. 69, 464–547.

    Google Scholar 

  • Scott, N.J., Jr.: 1976, ‘The abundance and diversity of the herpetofaunas of tropical forest litter’, Biotropica 8, 41–58.

    Google Scholar 

  • Scale, D.B.: 1980, Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem’. Ecology 61, 1531–1550.

    Google Scholar 

  • Shoemaker, V.H., Hillman, S.S., Hillyard, S.D., Jackson, D.C, McClanahan, L.L., Withers, P.C., and Wygoda, M.L.: 1992, ‘Exchange of water, ions, and respiratory gases in terrestrial amphibians’, In: Feder, M.E. and Burggren, W.W. (eds.), Environmental Physiology of the Amphibians, Univ. Chicago Press, Chicago, pp. 125–150.

    Google Scholar 

  • Spotila, J.R.: 1972, ‘Role of temperature and water in the ecology of lungless salamanders’, Ecol. Monogr. 42, 95–125.

    Google Scholar 

  • Stewart, M.M.: 1995, ‘Climate driven population fluctuations in rain forest frogs’, J. Herpetol. 29, 437–446

    Google Scholar 

  • Stewart, M.M. and Woolbright, L.L.: 1996. ‘Amphibians’, In: Reagan, D.P. and Waide, R.B. (eds.). The food Web of a Tropical Rain Forest., Univ. Chicago Press, Chicago, pp. 273–320.

    Google Scholar 

  • Toft, C.A.: 1980, ‘Feeding ecology of thiteen syntopic species of anurans in a seasonal tropical environment’, Oecologia 45 , 131–141.

    Google Scholar 

  • Toft, C.A.: 1981, ‘Feeding ecology of Panamanian litter anurans: patterns in diet and foraging mode’, J. Herpetol. 15, 139–144.

    Google Scholar 

  • Toft, C.A.: 1985, ‘Resource partitioning in amphibians and reptiles’, Copeia 1985, 1–20.

    Google Scholar 

  • Toft, C.A., and Duellman, W.E.: 1979, ‘Anurans of the lower Río Llullapichis, Amazonia, Peru: a preliminary analysis of community structure’, Herpetologica 35, 71–77.

    Google Scholar 

  • Toft, C.A., Rand, A.S., and CLark, M.: 1982, ‘Population dynamics and seasonal recruitment in Bufo typhonius and Colostethus nubicola (Anura)’, In: Leigh, E.G., Jr., Rand, A.S., and Windsor, D.M. (eds.), The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes, Smithsonian Instit, Press, Washington, D.C., pp. 397–403.1

    Google Scholar 

  • Vitousek, P.M.: 1994, ‘Beyond global warming: ecology and global change’. Ecology 75, 1861–1876.

    Google Scholar 

  • Vitt, L.J., and Caldwell, J.F., 1994, ‘Resource utilization and guild structure of small vertebrates in the Amazon forest leaf litter’, J. Zool., Lond. 234, 463–476.

    Google Scholar 

  • Vitt, L.J., Caldwell, J.P., Wilbur, H.M., Smith, D.C.: 1990, ‘Amphibians as harbingers of decay’, Bioscience 40, 418.

    Google Scholar 

  • Wake, D.B.: 1991, ‘Declining amphibian populations’, Science 253, 860.

    Google Scholar 

  • Wake, D.B., and Morowitz, H.J.: 1991, ‘Declining amphibian populations-a global phenomenon? Findings and recommendations’, Alytes 9 , 33–42.

    Google Scholar 

  • Wassersug, R.: 1992, ‘On assessing environmental factors affecting survivorship of premetamorphic amphibians’, In: Bishop, C.A., and Pettit, K.E. (eds.), Declines in Canadian amphibian populations: designing a national monitoring strategy, Occ. Pap. Canadian Wildl. Serv. 76, 53–59.

  • Wells, K.D.: 1977, ‘The social behaviour of anuran amphibians’, Anim. Behav. 25, 666–693.

    Google Scholar 

  • Wilson, L.D., and McCranie, J.R.: 1994, ‘Second update on the list of amphibians and reptiles known from Honduras’, Herpetol. Rev. 25, 146–150.

    Google Scholar 

  • Wissinger, S.A., and Whiteman, H.H.: 1992, ‘Fluctuation in a Rocky Mountain population of salamanders: anthropogenic acidification or natural variation?’, J. Herpetol. 26, 377–391.

    Google Scholar 

  • Wolda, H.: 1983, ‘Spatial and temporal variation in abundance of tropical animals’, In: Sutton, S.L., Whilmore, T.C., and Chadwick, A.C. (eds.). Tropical Rain Forest: Ecology and Management, Blackwell Scientific, Oxford, pp. 93–105.

    Google Scholar 

  • Wyman, R.L,: 1990, ‘What’s happening to the amphibians?’, Conserv. Biol. 4, 350–352.

    Google Scholar 

  • Wyman, R.L., and Jancola, J.: 1992, ‘Degree and scale of terrestrial acidification and amphibian community structure’, J. Herpetol. 26, 392–401.

    Google Scholar 

  • Zweifel, R.G.: 1977, ‘Upper thermal tolerances of anuran embryos in relation to stage of development and breeding habits’, Am. Mus. Novitates 2617, 1–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnelly, M.A., Crump, M.L. Potential Effects of Climate Change on Two Neotropical Amphibian Assemblages. Climatic Change 39, 541–561 (1998). https://doi.org/10.1023/A:1005315821841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005315821841

Keywords

Navigation