Skip to main content
Log in

Preparation and properties of montmorillonite/organo-soluble polyimide hybrid materials prepared by a one-step approach

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Montmorillonite (MMT)/organo-soluble polyimide (PI) hybrids were prepared using a one-step approach. The organo-modified MMT was dispersed in a solution of diphenylether-3, 3′4,4′-tetracarboxylic dianhydride and 4,4′-diamino-3,3′-dimethyldiphenylmethane. The solution polycondensation followed by a direct solution imidization at 180 °C resulted in MMT/PI hybrid solutions. From wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) results, the MMT is basically exfoliated in the hybrid films cast from the solutions when the MMT content is below 5 wt%. Further increase in the MMT content leads to severe aggregation. The properties of a MMT/PI hybrid are significantly dependent upon the MMT content. When the MMT content is below 6 wt%, the introduction of the MMT leads to strengthening and toughening to the PI matrix at the same time. The introduction of the MMT also results in improved thermal stability, marked decrease in coefficient of thermal expansion, slight increase in glass transition temperature and increase in modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Mark, Polym. Sci. Eng. 36 (1996) 2905.

    Google Scholar 

  2. E. P. Giannelis, Adv. Mater.8 (1996) 29.

    Google Scholar 

  3. M. Ogawa and K. Kuroda, Chem. Rev. 95 (1995) 399.

    Google Scholar 

  4. T. J. Pinnavaia, Science 220 (1983) 365.

    Google Scholar 

  5. T. Ogasa, J. Takahashi and K. Kemmochi, Adv. Composite Mater.4 (1995) 221.

    Google Scholar 

  6. D. C. Lee and W. J. Lee, J. Appl. Polym. Sci. 61 (1996) 1117.

    Google Scholar 

  7. A. Akelah and A. Moet, J. Mater. Sci. 31 (1996) 3589.

    Google Scholar 

  8. A. Moet, A. Akelah, A. Hiltner and E. Baer, Mater. Res. Soc. Symp. Proc. 351 (1994) 91.

    Google Scholar 

  9. J. G. Doh and I. Cho, Polym. Bull. 41 (1998) 511.

    Google Scholar 

  10. Y. Kurokawa, H. Yasuda, M. Kashiwagi and A. Oyo, J. Mater. Sci. Lett. 16 (1997) 1670.

    Google Scholar 

  11. N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki and A. Okada, J. Appl. Polym. Sci. 67 (1998) 87.

    Google Scholar 

  12. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, Macromolecules 30 (1997) 6333.

    Google Scholar 

  13. A. Usuki, M. Kawasumi, Y. Kojima and A. Okada, J. Mater. Res. 8 (1993) 1174.

    Google Scholar 

  14. Y. Kojima, A. Usuki, M. Kawasumi and A. Okada, ibid. 8 (1993) 1185.

    Google Scholar 

  15. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi and O. Kamifaito, J. Polym. Sci. Part A:Polym. Chem. 31 (1993) 1755.

    Google Scholar 

  16. R. A. Vaia, S. Vasudevan, W. Krawiee, L. G. Scanlon and E. P. Giannelis, Adv. Mater. 7 (1995) 154.

    Google Scholar 

  17. Z. Wang and T. J. Pinnavaia, Chem. Mater. 10 (1998) 3769.

    Google Scholar 

  18. J. J. Tunney and C. Detellier, ibid. 8 (1996) 927.

    Google Scholar 

  19. S. Wang, C. Long, X. Wang, Q. Li and Z. Qi, J. Appl. Polym. Sci.69 (1998) 1557.

    Google Scholar 

  20. T. Lan and T. J. Pinnavaia, Chem. Mater. 6 (1994) 2216.

    Google Scholar 

  21. T. Lan, P. D. Kaviratna and T. J. Pinnavaia, ibid. 7 (1995) 2144.

    Google Scholar 

  22. G. Jimenez, N. Ogata, H. Kawai and K. Ogihara, J. Appl. Polym. Sci. 64 (1997) 2211.

    Google Scholar 

  23. P. B. Messersmith and E. P. Giannelis, Chem. Mater. 5 (1993) 1064.

    Google Scholar 

  24. Idem., J. Polym. Sci. Part A: Polym. Chem. 33 (1995) 1047.

    Google Scholar 

  25. K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito, ibid. 31 (1993) 2493.

    Google Scholar 

  26. K. Yano, A. Usuki and A. Okada, ibid. 35 (1997) 2289.

    Google Scholar 

  27. Y. Yang, Z. Zhu, J. Yin, X. Wang and Z. Qi, Polymer 40 (1999) 4407.

    Google Scholar 

  28. Z. Zhu, Y. Yang, J. Yin, X. Wang, Y. Ke and Z. Qi, J. Appl. Polym. Sci. 73 (1999) 2306.

    Google Scholar 

  29. H.-L. Tyan, Y.-C. Liu and K.-H. Wei, Chem. Mater. 11 (1999) 1942.

    Google Scholar 

  30. C. E. Sroog, Prog. Polym. Sci. 16 (1991) 561.

    Google Scholar 

  31. D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, “Polyimides” (Plenum Press: New York, 1990).

    Google Scholar 

  32. D. A. Hoffman, H. Ansari and C. W. Frank, in “In Material Science of High-Temperature Polymers for Microelectronics,” edited by D. T. Grubb, I. Mita, D. Y. Yoon (MRS Symposium Series, 227, Materials Research Society: Pittsburgh, PA, 1991) p. 125.

    Google Scholar 

  33. F. W. Harris and S. L.-C. Hsu, High Perform. Polym. 1 (1989) 3.

    Google Scholar 

  34. Q. Lu, J. Yin, H. Xu, J. Zhang, L. Sun, Z. Zhu and Z. Wang, J. Appl. Polym. Sci. 72 (1999) 1299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Kang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JC., Zhu, ZK., Ma, XD. et al. Preparation and properties of montmorillonite/organo-soluble polyimide hybrid materials prepared by a one-step approach. Journal of Materials Science 36, 871–877 (2001). https://doi.org/10.1023/A:1004834730883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004834730883

Keywords

Navigation