Skip to main content
Log in

Liquid Helium and Liquid Neon-Sensitive, Low Background Scintillation Media for the Detection of Low Energy Neutrinos

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The use of liquid helium and neon as scintillators for neutrino detection is investigated. Several unique properties of these cryogens make them promising candidates for real-time solar neutrino spectroscopy: large ultraviolet scintillation yields from ionizing radiation, transparency to their own scintillation light, and low levels of radioactive impurities. When neutrinos scatter from electrons in liquid helium or neon, ultraviolet light is emitted. The ultraviolet scintillation light can be efficiently converted to the visible with wavelength shifting films. In this way the neutrino-electron scattering events can be detected by photomultiplier tubes at room temperature. We conclude that the solar neutrino flux from the p+p→e++d+ν e reaction could be characterized and monitored versus time using a 10 ton mass of liquid helium or neon as a scintillation target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Davis, D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).

    Google Scholar 

  2. T. Bowles (for the SAGE Collaboration): Proceedings of the 4th International Solar Neutrino Conference, W. Hampel (ed.), Heidelberg, Germany (1997).

  3. M. Cribier (for the GALLEX Collaboration), Nucl. Phys. B (Proc. Suppl.) 70, 284 (1999).

    Google Scholar 

  4. Y. Fukua et al., Phys. Rev. Lett. 77, 1683 (1996).

    Google Scholar 

  5. Kamiokande Collaboration: Phys. Rev. Lett. 77, 1683 (1996).

    Google Scholar 

  6. J. N. Bahcall, S. Basu, and M. H. Pinsonneault, Phys. Lett. B 433, 1 (1998).

    Google Scholar 

  7. R. E. Lanou, H. J. Maris, and G. M. Seidel, Phys. Rev. Lett. 58, 2498 (1987); S. R. Bandler, C. Enss, G. Goldhaber, R. E. Lanou, H. J. Maris, T. More, F. S. Porter, and G. M. Seidel, J. Low Temp. Phys. 93, 785 (1993).

    Google Scholar 

  8. A. de Bellefon for the HELLAZ collaboration, Nucl. Phys. B (Proc. Suppl.) 70, 386 (1999).

    Google Scholar 

  9. C. Arpesella, C. Broggini, and C. Cattadori, Astroparticle Physics 4, 333 (1996).

    Google Scholar 

  10. R. S. Raghavan, Phys. Rev. Lett. 78, 3618 (1997).

    Google Scholar 

  11. J. N. Bahcall, Neutrino Astrophysics, Chap. 8, Cambridge University Press, Cambridge, UK (1989).

    Google Scholar 

  12. Gioacchino Ranucci and Borexino Collaboration, Nucl. Phys. B (Proc. Suppl.) 70, 377 (1999).

    Google Scholar 

  13. M. Stockton, J. W. Keto, and W. A. Fitzsimmons, Phys. Rev. A 5, 372 (1972).

    Google Scholar 

  14. R. E. Packard, F. Reif, and C. M. Surko, Phys. Rev. Lett. 25, 1435 (1970).

    Google Scholar 

  15. C. M. Surko, R. E. Packard, G. J. Dick, and F. Reif, Phys. Rev. Lett. 24, 657 (1970).

    Google Scholar 

  16. H. A. Roberts and F. L. Hereford, Phys. Rev. A 7, 284 (1973).

    Google Scholar 

  17. S. Kubota, M. Hishida, M. Suzuki, and J. Ruan(Gen), Phys. Rev. B 20, 3486 (1979).

    Google Scholar 

  18. A. Hitachi, T. Takahashi, N. Nobutaka, K. Masuda, J. Kikuchi, and T. Doke, Phys. Rev. B 27, 5279 (1983).

    Google Scholar 

  19. K. Habicht, Ph.D. thesis, Technical University of Berlin, 1998 (unpublished).

  20. J. S. Adams, Y. H. Kim, R. E. Lanou, H. J. Maris, and G. M. Seidel, J. Low Temp. Phys. 113, 1121 (1998).

    Google Scholar 

  21. J. M. Doyle and S. K. Lamoreaux, Europhys. Lett. 26, 253 (1994).

    Google Scholar 

  22. D. N. McKinsey, C. R. Brome, J. S. Butterworth, R. Golub, K. Habicht, P. R. Huffman, S. K. Lamoreaux, C. E. H. Mattoni, and J. M. Doyle, Nucl. Inst. and Meth. B 132, 351 (1997).

    Google Scholar 

  23. Carlo Mattoni, private communication. In addition to the long-time measurements described in Ref. 21, work in our laboratory has placed limits on the amount of blue light emitted by TPB after 20 ns.

  24. T. Doke, K. Masuda, and E. Shibamura, Nucl. Inst. and Meth. A 291, 617 (1990).

    Google Scholar 

  25. D. N. McKinsey, C. R. Brome, J. S. Butterworth, S. N. Dzhosyuk, P. R. Huffman, C. E. H. Mattoni, J. M. Doyle, R. Golub, and K. Habicht, Phys. Rev. A 59, 200 (1999).

    Google Scholar 

  26. C. F. Chablowski, J. O. Jensen, D. R. Yarkony, and B. H. Lengsfield, III, J. Chem. Phys. 90, 2504 (1988).

    Google Scholar 

  27. B. Schneider and J. S. Cohen, J. Chem. Phys. 61, 3240 (1974).

    Google Scholar 

  28. T. Suemoto and H. Kanzaki, J. Phys. Soc. Jpn. 46, 1554 (1979).

    Google Scholar 

  29. The emissivity of organic substances can range from 0.1 to 0.9. See F. Pobell, Matter and Methods at Low Temperatures, Chap. 5, p. 84, Springer-Verlag, Berlin Heidelberg, Germany (1992).

    Google Scholar 

  30. I. M. Ward, Mechanical Properties of Solid Polymers, Chap. 12, Interscience, New York (1971).

    Google Scholar 

  31. J. Seguinot, T. Ypsilantis, and A. Zichichi, A Real Time Solar Neutrino Detector With Energy Determination, Fourth International Workshop on Neutrino Telescopes, p. 289 (1992).

  32. F. T. Avignone, III, R. L. Brodzinski, J. C. Evans, Jr., W. K. Hensley, H. S. Miley, and J. H. Reeves, Phys. Rev. C 34, 666 (1986).

    Google Scholar 

  33. Alimonti et al., Nucl. Inst. and Meth. A 406, 411 (1998).

  34. G. Jonkmans for the SNO collaboration, Nucl. Phys. B (Proc. Suppl.) 70, 329 (1999).

    Google Scholar 

  35. SNO internal report SNO-STR-93-042.

  36. W. S. Dennis, E. Durbin, W. A. Fitzsimmons, O. Heybey, and G. K. Walters, Phys. Rev. Lett. 23, 1083 (1969).

    Google Scholar 

  37. C. J. Martoff, Science 237, 507 (1987).

    Google Scholar 

  38. B. Cabrera, L. M. Krauss, and F. Wilczek, Phys. Rev. Lett. 55, 25 (1985).

    Google Scholar 

  39. G. L. Cassiday, J. W. Keuffel, and J. A. Thompson, Phys. Rev. D 7, 2022 (1973).

    Google Scholar 

  40. A. Bertin, A. Vitale, and A. Placci, Phys. Rev. A 7, 2214 (1973).

    Google Scholar 

  41. J. N. Bahcall and P. I. Krastev, Phys. Rev. C 55, 929 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinsey, D.N., Doyle, J.M. Liquid Helium and Liquid Neon-Sensitive, Low Background Scintillation Media for the Detection of Low Energy Neutrinos. Journal of Low Temperature Physics 118, 153–165 (2000). https://doi.org/10.1023/A:1004690906370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004690906370

Keywords

Navigation