Skip to main content
Log in

Infinite Prandtl Number Convection

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove an inequality of the type NCR 1/3(1+log+ R)2/3 for the Nusselt number N in terms of the Rayleigh number R for the equations describing three-dimensional Rayleigh–Bénard convection in the limit of infinite Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Heslot, B. Castaing, and A. Libchaber, Transitions to turbulence in helium gas, Phys. Rev. A 36:5870–5873 (1987); X. Chavanne, F. Chilla, B. Castaing, B. Hebral, B. Chabaud, and J. Chaussy, Observation of the ultimate regime in Rayleigh-Bérnard convection, Phys. Rev. Lett. 79 (1997); S. Cioni, S. Ciliberto, and J. Sommeria, Strongly turbulent Rayleigh-Bérnard convection in mercury: Comparison with results at moderate Prandtl number, J. Fluid Mech. 335:111-140 (1997); J. Werne, Structure of hard-turbulent convection in two dimensions: Numerical evidence, Phys. Rev. E 48:1020-1035 (1993); K. Julinen, S. Legg, J. McWilliams, and J. Werne, Hard turbulence in rotating Rayleigh-Bérnard convection, Phys. Rev. E 53:5557-5560 (1996).

    Google Scholar 

  2. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961).

    Google Scholar 

  3. L. N. Howard, Heat transport in turbulent convection, J. Fluid Mechanics 17:405–432 (1964); C. R. Doering and P. Constantin, Variational bounds on energy dissipation in incompressible flows III. Convection, Phys. Rev. E 53:5957-5981 (1996).

    Google Scholar 

  4. P. Constantin and C. R. Doering, Heat transfer in convective turbulence, Nonlinearity 9:1049–1060 (1996).

    Google Scholar 

  5. L. N. Howard, Convection at high Rayleigh number, Applied Mechanics, Proc. 11th Cong. Applied Mech., pp. 1109–1115, H. Grtler, ed. (1964); S.-K. Chan, Infinite Prandtl number turbulent convection, Stud. Appl. Math 50:13-49 (1971); B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X.-Z. Wu, S. Zaleski, and G. Zanetti, Scaling of hard thermal turbulence in Rayleigh-Bérnard convection, JFM 204:1-30 (1989); B. I. Shraiman and E. D. Siggia, Heat transport in high-Rayleigh-number convection, Phys. Rev. A 42:3650-3653 (1990); Z.-S. She, Phys. Fluids A 1:911 (1989); V. Yakhot, Phys. Rev. Lett. 69:769 (1992); R. H. Kraichnan, Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids 5:1374-1389 (1962); E. D. Siggia, High Rayleigh number convection, Ann. Rev. Fluid Mech. 26:137-168 (1994).

    Google Scholar 

  6. P. Constantin and C. R. Doering, Variational bounds in dissipative systems, Physica D 82:221–228 (1195).

    Google Scholar 

  7. E. Stein and G. Weiss, Introduction to Harmonic Analysis in Euclidean Spaces, Princeton Mathematical Series (Princeton Univ. Press, Princeton, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, P., Doering, C.R. Infinite Prandtl Number Convection. Journal of Statistical Physics 94, 159–172 (1999). https://doi.org/10.1023/A:1004511312885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004511312885

Navigation