Skip to main content
Log in

Matrix molecular orientation in fiber-reinforced polypropylene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A distinctive crystalline morphology which develops in certain fiber-reinforced thermoplastics, termed "transcrystallinity", occurs as the result of dense nucleation of polymer crystals at the surface of reinforcing fibers. As these fiber-sponsored nuclei grow, they impinge upon one another, such that crystal growth occurs essentially perpendicular to the fiber axis. Previous studies concerning transcrystallized composites have generally focused on single-fiber composites or model systems. Our interest is in elucidating the crystal orientation in conventional fiber-reinforced composites, and in quantifying the fraction of transcrystallized matrix, where present. In the present work, we develop a wide-angle X-ray scattering (WAXS) technique to investigate composites formed from an isotactic polypropylene (PP) matrix with practical loading levels of unidirectional pitch-based carbon, polyacrylonitrile (PAN)-based carbon, or aramid fibers. The transcrystalline fraction of the crystalline matrix approaches 0.95 in pitch-based carbon composites and 0.50 in the aramid composites near fiber loadings of 30 vol %. In addition, a previously-unreported mode of matrix orientation is observed in composites containing the non-transcrystallizing PAN-based carbon fibers, arising from restrictions on the isotropic growth of PP crystallites by the unidirectional fibers. This "constrained growth" orientation can coexist with the transcrystallized matrix at lower fiber loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Folkes in “Polypropylene Structure, Blends, and Composites,” edited by J. Karger-Kocsis (Chapman & Hall, London, 1995 Vol. 3) p. 340.

    Google Scholar 

  2. E. J. H. Chen and B. S. Hsiao, Polym. Eng. Sci. 32 (1992) 280.

    Google Scholar 

  3. M. J. Folkes and S. T. Hardwick, J. Mat. Sci. 25 (1990) 2598.

    Google Scholar 

  4. E. G. Lovering, J. Polym. Sci. Part A2. 8 (1970) 1697.

    Google Scholar 

  5. T. Hata, K. Ohsaka, T. Yamada, K. Nakamae, N. Shibata and T. Matsumoto, J. Adhesion 45 (1994) 125.

    Google Scholar 

  6. V. E. Reinsch and L. Rebenfeld, J. Appl. Polym. Sci. 52 (1994) 649.

    Google Scholar 

  7. L. C. Lopez and G. L. Wilkes, Polymer 29 (1988) 106.

    Google Scholar 

  8. G. P. Desio and L. Rebenfeld, J. Appl. Polym. Sci. 44 (1992) 1991.

    Google Scholar 

  9. N. A. Mehl and L. Rebenfeld, J. Appl. Polym. Sci. 57 (1995) 187.

    Google Scholar 

  10. J. Varga, J. Mat. Sci. 27 (1992) 2557.

    Google Scholar 

  11. A. J. Lovinger, J. Polym. Sci.: Polym. Phys. 21 (1983) 97.

    Google Scholar 

  12. M. Hikosaka and T. Seto, Polym. Journal 5 (1973) 111.

    Google Scholar 

  13. F. L. Binsbergen and B. G. M. Delange, Polymer 9 (1968) 23.

    Google Scholar 

  14. B. Lotz and J. C. Wittmann, J. Polym. Sci.: Part B: Polym. Phys. 24 (1986) 1541.

    Google Scholar 

  15. R. J. Samuels and R. Y. Yee, J. Polym. Sci.: Part A2 10 (1972) 385.

    Google Scholar 

  16. D. R. Norton and A. Keller, Polymer 26 (1985) 204.

    Google Scholar 

  17. S. BrÜckner and S. V. Meille, Nature 340 (1989) 455.

    Google Scholar 

  18. S. V. Meille, S. BrÜckner and W. Porzio, Macromolecules 23 (1990) 4114.

    Google Scholar 

  19. R. L. Miller, Polymer 1 (1960) 135.

    Google Scholar 

  20. M. Gezorich and P. H. Geil, Polym. Eng. Sci. 8 (1968) 202.

    Google Scholar 

  21. R. N. Lee, in “International Encyclopedia of Composites, Vol. 1,” edited by S. M. Lee (VCH Publishers Inc., 1990) 241.

  22. S. Y. Hobbs, Nature 234 (1971) 12.

    Google Scholar 

  23. D. P. Anderson and S. Kumar, SPE Annual Tech. Conf. (1990) 1248.

  24. A. J. Greso and P. J. Phillips, Polymer 37 (1996) 3165.

    Google Scholar 

  25. E. S. Clark and J. E. Spruiell, Polym. Eng. Sci. 16 (1976) 176.

    Google Scholar 

  26. D. M. Dean, PhD Thesis, Princeton University (1998).

  27. M. Kakudo and N. Kasai, in “X-ray Diffraction by Polymers” (Elsevier Publishing Co., 1972) 231.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, D.M., Rebenfeld, L., Register, R.A. et al. Matrix molecular orientation in fiber-reinforced polypropylene composites. Journal of Materials Science 33, 4797–4812 (1998). https://doi.org/10.1023/A:1004474128452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004474128452

Keywords

Navigation