Skip to main content
Log in

Microscopy and electron spectroscopic study of the interfacial chemistry in Al–Ti alloy/graphite systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The chemical and physical interaction of liquid metal surfaces with various substrates is an important, largely unexplored aspect of technology, with implications in composite science and catalysis. In the present case, we have employed X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), in conjugation with sessile drop wettability tests, to examine the interfacial properties and surface chemistry of the systems formed by adding liquid drops of select Al–Ti alloys to graphite substrates. A variety of different chemical states was revealed in the XPS results, suggesting the formation of separate regions composed of elemental metals, alloys and carbides. Many of the specific features detected appear to depend on the various treatment properties, e.g. the temperature, bulk alloy composition, size and shape of the alloy drop and time of interaction. The surface analyses were also supported by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies. The combined results suggest the induction of a strong reaction between titanium and carbon, resulting in an improvement in the wettability of the alloy with the graphite substrate and a corresponding structure transformation from the (LAl–Ti+Al3Ti) state to the (LAl–Ti+TiC) semi-liquid state. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YU. V. Naidich, in “Progress in Surface and Membrane Science”, edited by J. F. Danielli, Vol. 14 (Academic Press, London, 1981) p. 353.

    Google Scholar 

  2. N. Eustathopoulos, D. Chatain and R. Sangiorgi, in “Proceedings of the European Colloquium on Designing Interfaces: Ceramic-Ceramic, Ceramic-Metal Joining”, Patent (the Netherlands), edited by S. D. Peteves Elsevier Applied Science, 1989) p. 197.

  3. M. G. Nicolas, Proc. Mater. Sci. Forum 29 (1988) 127.

    Google Scholar 

  4. N. Eustathopoulos, Int. Metals Rev. 28 (1983) 189.

    Google Scholar 

  5. A. Mortenson, Mater. Sci. Eng. A135 (1991) 1.

    Google Scholar 

  6. YU. V. Naidich and G. A. Kolesnichenko, “Interaction of Metallic Solutions with diamond and Graphite Surfaces ” (Science Publishers, Kiev, 1967) 89.

    Google Scholar 

  7. K. Yoshinobu, Y. Mishima, S. Umekana and T. Suzuki, J. Mater. Sci. 19 (1984) 107.

    Google Scholar 

  8. W. Jianxin, L. Pengeing, G. Mingyuan and W. Renjil, Compos. Interfaces 1 (1993) 75.

    Google Scholar 

  9. A. N. Varenkov et al., in “Proceedings of the Moscow International Composite Conference” (Elsevier Applied Science, 1990) 412.

  10. A. Banerji and W. Reif, Metall. Trans. 17A (1986) 2127.

    Google Scholar 

  11. A. Jarfors, H. Fredrikson and L. Froyen, Mater. Sci. Eng. A135 (1991) 119.

    Google Scholar 

  12. V. Shtessel, S. Sampath and M. Koczak, in “Proceedings of the Symposium on in situ Composites, Science and Technology”, 17-21 October 1993, Pittsburgh, PA, pp. 37.

  13. S. Khattri, V. Shtessel, M. Koczak, A. P. Divecha and J. Kerr, ibid. p. 115.

  14. A. Cibula, J. Inst. Metals 76 (1949–50) 321.

    Google Scholar 

  15. C. R. Manning and T. B. Gurganus, J. Am. Ceram. Sci. 52 (1969) 115.

    Google Scholar 

  16. N. Sobczak, Z. Gorny, P. K. Rohatgi, M. Ksiazek and W. Radziwill, in “Proceedings Cast Composites”, Zakopane, Poland, October 1995, p. 65.

  17. T. L. Barr, “Modern ESCA” (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  18. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12 (1948) 163.

    Google Scholar 

  19. F. P. Fehlner, “Low Temperature Oxidation” (Wiley, New York, 1986).

    Google Scholar 

  20. N. Sobczak, Transaction of Fountry Research Institute, XLIV, 739 (1994) 221.

    Google Scholar 

  21. D. Briggs and M. P. Seah, “Practical Surface Analysis”, 2nd Edn. (Wiley, Chichester, UK, 1990).

    Google Scholar 

  22. A. Jarfors and H. Fredrikson, Microgravity Sci. Technol III(4) (1991) 216.

    Google Scholar 

  23. T. L. Barr and M. Yin, J. Vac. Sci. Technol. A10 (1992) 2788.

    Google Scholar 

  24. N. Sobczak, Z. Gorny, H. Ksiazek, W. Radziwill, P. Rohatgi, in “Proc. Fifth International Conference on Al-alloys.” (ICAA-5), July 1–5, 1996, Grenoble, France.

  25. S. Liu, R. Hu and C. Wang, J. Appl. Phys. 74(5) (1993) 3204.

    Google Scholar 

  26. D. E. Mercer, T. R. Hess, T. Mebrahtu, D. L. Cocke and D. G. Naugle, J. Vac. Sci. Technol. A 9 (1991) 1610.

    Google Scholar 

  27. P. K. Rohatgi, Y. Liu and T. L. Barr, Metall. Trans. 22A (1991) 1435.

    Google Scholar 

  28. T. L. Barr and Seal, J. Vac. Sci. Technol. A 13 (1995) 1239.

    Google Scholar 

  29. T. L. Barr, S. Seal, Le Me Chein and C. C. Kao, Thin Solid Films 253 (1994) 277.

    Google Scholar 

  30. A. E. Huges, M. M. Hedges and B. A. Sexton, J. Mater. Sci. 25 (1990) 4856.

    Google Scholar 

  31. N. Sobczak, S. Seal, S. J. Kerber, S. Hardcastle, P. K. Rohatgi and T. L. Barr, in “Proceedings of the Cast Composites Conference”, Zakopane, Poland, October 1995, p. 38.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, S., Barr, T.L., Sobczak, N. et al. Microscopy and electron spectroscopic study of the interfacial chemistry in Al–Ti alloy/graphite systems. Journal of Materials Science 33, 4147–4158 (1998). https://doi.org/10.1023/A:1004457320895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004457320895

Keywords

Navigation