Skip to main content
Log in

A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) along with electrochemical potentiokinetic reactivation (EPR) testing was performed on different grades of 304 stainless steel (0.01, 0.025, 0.05, and 0.07%C) in order to assess the sensitization and precipitation behaviour on different grain boundary misorientations. The materials were heat treated at 670°C for 50 h to subject the materials to the sensitization regime. The EPR data and TEM observations revealed that when the amount of carbon was increased the degree of sensitization increased along with the density of precipitates. Large angle misorientations (Θ>15°) were prevalent in all the carbon content materials and the {1 1 0} grain surface orientation was found to be the major texturing orientation. The steels with lower carbon contents nucleated a few small precipitates on high angle grain boundaries, while larger amounts of carbides were observed on lower angle grain boundaries for the higher carbon contents. It was deemed that higher carbon contents required lower energies to nucleate and grow precipitates. A carbon content threshold was found (above 0.05% C) in which precipitates fully saturate the grain boundary. Precipitation followed the energies of different types of boundaries. The highest energy boundary (general random grain boundary) nucleated precipitates first, then precipitation followed on non-coherent twin boundaries, and was not observed on coherent twin boundaries. A “critical nucleation energy”, γgb(crit.), was therefore found to exist at which precipitation will occur on a boundary. This value was found to be in the range of 16 mJ m-2<γgb(crit.)<265 mJ m-2 which corresponds to the energies of special boundaries (coherent and non-coherent portions of twins respectively) at the ageing temperature of 670 °C. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stickler and A. Vinckier, Trans. ASM 54 (1961) 362.

    Google Scholar 

  2. K. T. Aust and G. Palumbo, Trans. Jpn Inst. Met. 27 (1986) 995.

    Google Scholar 

  3. G. Palumbo and K. T. Aust, Acta Metall. Mater. 38 (1990) 2343.

    Google Scholar 

  4. D. G. Crawford and G. S. Was, Metall. Trans A 23A (1992) 1195.

    Google Scholar 

  5. S. Sangall, K. J. Kurzydlowski and K. Tangri, Acta Metall. Mater. 39 (1991) 1281.

    Google Scholar 

  6. T. Watanabe, Mater. Forum 11 (1988) 284.

    Google Scholar 

  7. A. H. Advani, R. J. Romero, L. E. Murr, D. J. Matlock, W. W. Fisher, P. M. Tarin, C. M. Cedillo, J. G. Maldonado, R. C. Miller and E. A. Trillo, Scripta Metall. Mater. 27 (1992) 1759.

    Google Scholar 

  8. R. J. Romero and L. E. Murr, Acta Metall. Mater. 43 (1995) 461.

    Google Scholar 

  9. T. Watanabe, Res. Mechanica 11 (1984) 47.

    Google Scholar 

  10. J. Bystrzycki, W. Przetakiewicz and K. J. Kurzydlowski, Acta Metall. Mater. 41 (1993) 2639.

    Google Scholar 

  11. G. Palumbo, K. T. Aust, U. Erb, P. J. King, A. M. Brennenstuhl and P. C. Lichtenberger, Phys. Stat. Solidi. (a) 131 (1992) 425.

    Google Scholar 

  12. E. A. Trillo, R. Beltran, J. G. Maldonado, R. J. Romero, L. E. Murr, W. W. Fisher and A. H. Advani, Mater. Char. 35 (1995) 99.

    Google Scholar 

  13. P. Lin, G. Palumbo, U. Erb and K. T. Aust, Scripta Metall. Mater. 33 (1995) 1387.

    Google Scholar 

  14. J. Mizera, A. Garbacz and K. J. Kurzydlowski, ibid. 33 (1995) 515.

    Google Scholar 

  15. B. Adams, S. Wright and K. Kunze, Met. Trans. A 24A (1993) 819.

    Google Scholar 

  16. L. E. Murr, “Electron and ion microscopy and microanalysis,” 2nd edition (Marcel Dekker, Inc., New York, 1991).

    Google Scholar 

  17. R. Von Meibom and E. Rupp, Z. Phys. 82 (1933) 690.

    Google Scholar 

  18. B. W. Bennett and H. W. Pickering, Scripta Metall. Mater. 18 (1984) 743.

    Google Scholar 

  19. H. J. Aaronson, G. Spanos, R. A. Masamura, R. G. Vardiman, D. W. Moon, E. S. K. Menon and M. G. Hull, Mater. Sci. Engng B32 (1995) 107.

    Google Scholar 

  20. L. E. Murr, “Interfacial phenomena in metals and alloys” (Addison Wesley Publishing Co., Reading, MA 1975; reprinted by Teck Books, Fairfax, VA, 1991).

    Google Scholar 

  21. S. M. Bruemmer, Corrosion 42 (1986) 27.

    Google Scholar 

  22. M. Terao and B. Sasmal, Metallography 13 (1980) 117.

    Google Scholar 

  23. L. K. Singhal and J. W. Martin, Acta Metall. Mater. 15 (1967) 1603.

    Google Scholar 

  24. L. E. Murr, R. J. Horylev and W. H. Lin, Phil. Mag. 20 (1969) 1245.

    Google Scholar 

  25. L. E. Murr, G. I. Wong and R. J. Horylev, Acta Metall. Mater. 21 (1973) 595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trillo, E.A., Murr, L.E. A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels. Journal of Materials Science 33, 1263–1271 (1998). https://doi.org/10.1023/A:1004390029071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004390029071

Keywords

Navigation