Skip to main content
Log in

Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTLs) controlling salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) were identified by interval mapping analysis using marker information from two doubled haploid (DH) populations derived from the crosses, Steptoe/Morex and Harrington/TR306.

Interval mapping analysis revealed that the QTLs for salt tolerance at germination in the DH lines of Steptoe/Morex were located on chromosomes 4 (4H), 6(6H), and 7(5H), and in the DH lines of Harrington/TR306 on chromosomes 5(1H) and 7(5H). In both DH populations, the most effective QTLs were found at different loci on chromosome 7(5H). Genetic linkage between salt tolerance at germination and abscisic acid (ABA) response was found from QTL mapping. The QTLs for the most effective ABA response at germination were located very close to those for salt tolerance on chromosome 7 (5H) in both crosses.

The QTLs for salt tolerance at the seedling stage were located on chromosomes 2(2H), 5(1H), 6(6H), and 7(5H) in the DH lines of Steptoe/Morex, and on chromosome 7(5H) in the DH lines of Harrington/TR 306. Their positions were different from those of QTLs controlling salt tolerance at germination, indicating that salt tolerance at germination and at the seedling stage were controlled by different loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backes, G., A. Graner, B. Foroughi-Wehr, G. Fischbeck, G. Wenzel & A. Jahoor, 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 99: 294–302.

    Google Scholar 

  • Batie, S.S. & R.G. Healy, 1983. The future of American agriculture. Sci Am 248: 27–35.

    Article  Google Scholar 

  • Begum, F., J.L. Karmoker, Q.A. Fattah & A.F.M. Maniruzzaman, 1992. The effect of salinity on germination and its correlation with K+, Na+, Cl accumulation in germinating seeds of Triticum aestivum L. cv. Akbar. Plant Cell Physiol 33: 1009–1014.

    CAS  Google Scholar 

  • Boyer, J.S., 1982 Plant productivity and environment. Science 218: 443–448.

    PubMed  CAS  Google Scholar 

  • Chen, F.Q. & P.M. Hayes, 1989. A comparison of Hordeum bulbosum mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor Appl Genet 77: 701–704.

    Google Scholar 

  • Chen, F.Q., D. Prehn, P.M. Hayes, D. Mulrooney, A. Corey & H. Vivar, 1994. Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Apple Genet 88: 215–219.

    CAS  Google Scholar 

  • Dubcovsky, J., M.-C. Luo & J. Dvorak, 1995. Linkage relationships among stress-induced genes in wheat. Theor Appl Genet 91: 795–801.

    Article  CAS  Google Scholar 

  • Epstein, E., J.D. Norlyn, D.W. Rush, R.W. Kingsbury, D.B. Kelley, G.A. Cunningham & A.F. Wrona, 1980. Saline culture of crops: A genetic approach. Science 210: 399–404.

    CAS  PubMed  Google Scholar 

  • Forster, B.P., 1992. Genetic engineering for stress tolerance in the tribe Triticeae. Proceeding of the Royal Society of Edinburgh 99B, 89–106.

    Google Scholar 

  • Forster, B.P., T.E. Miller & C.N. Law, 1988. Salt tolerance of two wheat Agropyron junceum disomic addition lines. Genome 30: 559–564.

    Google Scholar 

  • Forster, B.P., M.S. Phillips, T.E. Miller, E. Baird & W. Powell, 1990. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65: 99–107.

    Google Scholar 

  • Greenway, H., 1965. Plant response to saline substrates. VII. Growth and ion uptake throughout plant development in two varieties of Hordeum vulgare. Aust J Biol Sci 18: 763–779.

    CAS  Google Scholar 

  • Hayes, P.M., T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan & B. Liu, 1993a. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness. Genome 36: 66–71.

    PubMed  CAS  Google Scholar 

  • Hayes, P.M., B.H. Liu, S.J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D. Rasmusson, M. Sorrells, S.E. Ullrich, D. Wesenberg & A. Kleinhofs, 1993b. Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet 87: 392–401.

    Article  Google Scholar 

  • Heenan, D.P., L.G. Lewin & W.D. McCaffery, 1988. Salt tolerance in rice varieties at different growth stages. Aust J Exp Agr 28: 343–349.

    Article  Google Scholar 

  • Heun, M., 1992. Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35: 1019–1025.

    CAS  Google Scholar 

  • Iwasa, T., F.S. Thseng, H. Takahashi & K. Takeda, 1996. Studies on flooding tolerance in barley VII. Mapping quantitative loci for pre-germination flooding tolerance. Breed Sci 46(Suppl. 1): 208.

    Google Scholar 

  • Iyamabo, O.E. & P.M. Hayes, 1995. Effects of plot type on detection of quantitative-trait-locus effects in barley (Hordeum vulgare L.). Plant Breeding 114: 55–60.

    Article  Google Scholar 

  • Jana, M.K., S. Jana & S.N. Acharya, 1980. Salt stress tolerance in heterogeneous populations of barley. Euphytica 29: 409–417.

    Article  Google Scholar 

  • Kaddah, M.T. & S.I. Ghowail, 1964. Salinity effects on the growth of corn at different stages of development. Agron J 56: 214–217.

    Article  CAS  Google Scholar 

  • Kasha, K.J., A. Kleinhofs & the North American Barley Genome Mapping Project, 1994. Mapping of the barley cross Harrington-TR306. Barley Genet Newsl 23: 65–69.

    Google Scholar 

  • Kjær, B., J. Jensen & H. Giese, 1995. Quantitative trait loci for heading date and straw characters in barley. Genome 38: 1098–1104.

    PubMed  Google Scholar 

  • Kleinhofs, A., A. Kilian, M.A. Saghai Maroof, R.M. Biyashev, P. Hayes, F.Q. Chen, N. Lapitan, A. Fenwick, T.K. Blake, V. Kanazin, E. Ananiev, L. Dahleen, D. Kudrna, J. Bollinger, S.J. Knapp, B. Liu, M. Sorrells, M. Heun, J.D. Franckowiak, D. Hoffman, R. Skadsen & B.J. Steffenson, 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86: 705–712.

    Article  CAS  Google Scholar 

  • Kovda, V.A. & I. Szabolcs, 1979. Modelling of soil salinization and alkalization. Agrokem. Talajtan 28:Suppl.

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  CAS  Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S.E. Lincoln & L. Newburg, 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Le Page-Degivry, M.T. & G. Garello, 1992. In situ abscisic acid synthesis. A requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiol 98: 1386–1390.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, S., M. Daly & E. Lander, 1992a, Construction of genetic maps with MAPMAKER/Exp 3.0. Whitehead Institute Technical Report, 3rd ed.

  • Lincoln, S., M. Daly & E. Lander, 1992b. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report 2nd ed.

  • Maas, E.V., G.J. Hoffman, G.D. Chaba, J.A. Poss & M.C. Shannon, 1983. Salt sensitivity of corn at various growth stages. Irrig Sci 4: 45–57.

    Article  Google Scholar 

  • Maas, E.V. & J.A. Poss, 1989. Salt sensitivity of wheat at various growth stages. Irrig Sci 10: 29–40.

    Google Scholar 

  • Maddur, A.M., 1977. The inheritance of salt tolerance in barley (Hordeum vulgare L.). Dissert. Abstr. Int. B, 37(12): 5911 B.

    Google Scholar 

  • Mano, Y., H. Nakazumi & K. Takeda, 1996. Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breed Sci 46: 227–233.

    Google Scholar 

  • Mano, Y. & K. Takeda, 1995. Varietal variation and effects of some major genes on salt tolerance in barley seedlings. Bull Res Inst Bioresour Okayama Univ 3: 71–81.

    Google Scholar 

  • Mano, Y. & K. Takeda, 1996. Genetical studies on salt tolerance at germination in recombinant inbred, isogenic, and doubled haploid lines of barley (Hordeum vulgare L.) Bull Res Inst Bioresour Okayama Univ 4: 79–88.

    CAS  Google Scholar 

  • Pan, A., P.M. Hayes, F. Chen, T.H.H. Chen, T. Blake, S. Wright, I. Karsai & Z. Bed, 1994. Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare). Theor Appl Genet 89: 900–910.

    Article  CAS  Google Scholar 

  • Pearson, G.A., A.D. Ayers & D.L. Eberhard, 1966. Relative salt tolerance of rice during germination and early seedling development. Soil Sci 102: 151–156.

    CAS  Google Scholar 

  • Pinfield, N.J., P.A. Stutchbury, S.A. Bazaid & V.E.E. Gwarazimba, 1989. Seed dormancy in Acer: The relationship between seed dormancy, embryo dormancy and abscisic acid in Acer platanoides L. J Plant Physiol 135: 313–318.

    CAS  Google Scholar 

  • Steffenson, B.J., P.M. Hayes & A. Kleinhofs, 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92: 552–558.

    Article  CAS  Google Scholar 

  • Taeb, M., R.M.D. Koebner, B.P. Forster & C.N. Law, 1992. Association between genes controlling flowering time and shoot sodium accumulation in the Triticeae. Plant and Soil 146: 117–121.

    Article  CAS  Google Scholar 

  • Takahashi, H., Y. Mano, K. Sato & K. Takeda, 1995. Mapping genes for deep seeding tolerance in barley. Breed Sci 45(Suppl. 2): 104.

    Google Scholar 

  • Takeda, K., 1995. Varietal variation and inheritance of seed dormancy in barley. Proc. Seventh International Symp. on Pre-Harvest Sprouting in Cereals. Abashiri, Hokkaido, Japan. July 2–7, 1995: 205–212.

  • Thomas, W.T.B., W. Powell, R. Waugh, K.J. Chalmers, U.M. Barua, P. Jack, V. Lea, B.P. Forster, J.S. Swanston, R.P. Ellis, P.R. Hanson & R.C.M. Lance, 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare). Theor Appl Genet 91: 1037–1047.

    Article  CAS  Google Scholar 

  • Tinker, N.A., D.E. Mather & the North American Barley Genome Mapping Project, 1994. Main effects of quantitative trait loci in Harrington/TR306 two-row barley. Barley Genet Newsl 23: 72–78.

    Google Scholar 

  • Ullrich, S.E., P.M. Hayes, W.E. Dyer, T.K. Blake & J.A. Clancy, 1992. Quantitative trait locus analysis of seed dormancy in Steptoe barley. In: Pre-Harvest in Cereals Walker-Simmons, M.K. and J.L. Ried (Eds.), USDA-ARS Washington State University Pullman, Washington, 136–145.

    Google Scholar 

  • Walton, D.C., 1980. Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mano, Y., Takeda, K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94, 263–272 (1997). https://doi.org/10.1023/A:1002968207362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002968207362

Navigation