Skip to main content
Log in

Sulfur metabolism in bacteria associated with cheese

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Metabolism of sulfur in bacteria associated with cheese has long been a topic of interest. Volatile sulfur compounds, specifically methanethiol, are correlated to desirable flavor in Cheddar cheese, but their definitive role remains elusive. Only recently have enzymes been found that produce this compound in bacteria associated with cheese making. Cystathionine β- and γ-lyase are found in lactic acid bacteria and are capable of producing methanethiol from methionine. Their primary function is in the metabolism of cysteine. Methionine γ-lyase produces methanethiol from methionine at a higher efficiency than the cystathionine enzymes. This enzyme is found in brevibacteria, bacilli, and pseudomonads. Addition of brevibacteria containing this enzyme improves Cheddar cheese flavor. Despite recent progress in sulfur metabolism more information is needed before cheese flavor associated with sulfur can be predicted or controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen C & Parks OW (1975) Evidence for methional in skim milk exposed to sunlight. J. Dairy Sci. 58: 1609-1611

    Google Scholar 

  • Alting AC, Engels WJM, van Schalkwijk S & Exterkate FA (1995) Purification and characterization of cystathionine β-lyase from Lactococcus lactis subsp. cremoris B78 and its possible role in flavor development in cheese. Appl. Environ. Microbiol. 61: 4037-4042

    Google Scholar 

  • Amerine MA, Pangborn RM & Roessler EB (1965) Principles of sensory evaluation of food. Academic Press, New York

    Google Scholar 

  • Arima K, Yamashita T, Hosoda J & Tamura G (1970) Studies on substances active on the behavior of planarian Part I. Production of trans-3-methylthioacrylic acid and 3-methylthiopropionic acid by microorganisms. Agric. Biol. Chem. 34: 1178-1183

    Google Scholar 

  • Arora G, Cormier F & Lee B (1995) Analysis of odor-active volatiles in Cheddar cheese headspace by multidimensional GC/MS/sniffing. J. Agric. Food Chem. 43: 748-752

    Google Scholar 

  • Aston JW & Douglas K (1983) The production of volatile sulphur compounds in Cheddar cheeses during accelerated ripening. Australian J. Dairy Tech. 66-70

  • Aston JW & Dulley JR (1982) Cheddar cheese flavour. Australian J. Dairy Tech. 37: 59-64

    Google Scholar 

  • Ayling PD & Bridgeland ES (1972) Methionine transport in wild-type and transport defective mutants of Salmonella typhimurium. J. Gen. Microbiol. 73: 127-141

    Google Scholar 

  • Ayling PD, Mojica AT & Sklopotowski T (1979) Methionine transport in Salmonella typhimurium: evidence for at least one low affinity transport system. J. Gen. Microbiol. 114: 227-246

    Google Scholar 

  • Ballance PE (1961) Production of volatile compounds related to the flavor of foods from the Strecker degradation of DL-methionine. J. Sci. Food and Agric. 12: 532-

    Google Scholar 

  • Benevenga NJ & Steele RD (1984) Adverse effects of excessive consumption of amino acids. Annual Reviews in Nutrition 4: 157-181

    Google Scholar 

  • Bruinenberg PG, deRoo G & Limsowtin GK (1997) Purification and characterization of cystathionine γ-lyase from Lactococcus lactis subsp. cremoris SK11: Possible role in flavor compound formation during cheese maturation. Appl. Environ. Microbiol. 63: 561-566

    Google Scholar 

  • Brush A & Paulus H (1971) The enzymatic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem. Biophys. Res. Comm. 45: 735-741

    Google Scholar 

  • Chin H-W & Lindsay RC (1994) Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide. Food Chem. 49: 387-392

    Google Scholar 

  • Christensen KR & Reineccius GA (1995) Aroma extract dilution analysis of aged Cheddar cheese. J. Food Sci. 60: 218-220

    Google Scholar 

  • Collin JC & Law BA (1989) Isolation and characterization of the L-methionine γ-demethiolase from Brevibacterium linens NCDO 739. Sciences des Aliments 9: 805-812

    Google Scholar 

  • Cuer A, Dauphin G, Kergomard A, Dumont JP & Adda J (1979) Production of S-methylthioacetate by Brevibacterium linens. Appl. Environ. Microbiol. 38: 332-334

    Google Scholar 

  • Cuer A, Dauphin G, Kergomard A, Dumont JP & Adda J (1979) Production of S-methylthioacetate by Micrococcus cheese strains. Agric. Biol. Chem. 43: 1783-1784

    Google Scholar 

  • Cuer A, Dauphin G, Kergomard A, Roger S, Dumont JP & Adda J (1979) Flavour properties of some sulphur compounds isolated from cheeses. Lebensmittel-Wissenschaft und Technologie 12: 258-261

    Google Scholar 

  • Dacremont C & Vickers A (1994) Concept matching technique for assessing importance of volatile compounds for Cheddar cheese aroma. J. Food Sci. 59: 981-985

    Google Scholar 

  • Dawes J & Foster MA (1971) Vitamin B12 and methionine synthesis in Escherichia coli. Biochimica et Biophysica Acta 237: 455-464

    Google Scholar 

  • Dias B & Weimer B (1999) Production of volatile sulfur compounds in Cheddar cheese slurries. Int. Dairy J. (in press)

  • Dias B & Weimer B (1998a) Conversion of methionine to thiols by lactococci, lactobacilli and brevibacteria. Appl. Environ. Microbiol. 64: 3320-3326

    Google Scholar 

  • Dias B & Weimer B (1998b) Purification and characterization of L-methionine γ-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol. 64: 3327-3331

    Google Scholar 

  • Dimos A (1992) A comparative study by GC/MS of the flavor volatiles produced during the maturation of full-fat and low-fat Cheddar cheese. M.S. thesis. Latrobe University, Bundoora, Victoria, Australia

    Google Scholar 

  • Drake MA, Boylston TD, Spence KD & Swanson BG. (1997) Improvement of sensory quality of reduced fat Cheddar cheese by a Lactobacillus adjunct. Food Res. Int. 30: 35-40

    Google Scholar 

  • Drake MA, Boylston TD, Spence KD & Swanson BG. (1996) Chemical and sensory effects of a Lactobacillus adjunct in Cheddar cheese. Food Res. Int. 29: 381-387

    Google Scholar 

  • Driessen AJM, de Jong S & Konings WN (1987) Transport of branched chain amino acids in membrane vesicles of Streptococcus cremoris. J. Bacteriol. 169: 5193-5200

    Google Scholar 

  • Dumont JP, Degas C & Adda J (1976) L'arome du Pont-l'Eveque: Mise en evidence de constituants votatils quantitativement mineurs. Lait 56: 177-182

    Google Scholar 

  • Dumont JP, Roger S & Adda J (1974) Etude des composes volatils neutres presents dans les fromages a pate molle et a croute lavee. Lait 54: 31-43

    Google Scholar 

  • Esaki N, Nakayama T, Sawada S, Tanaka H & Soda K (1985) 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine γ-lyase. Biochemistry 24: 3857-3862

    Google Scholar 

  • Esaki N, Tanaka H, Uemura S, Suzuki T & Soda K (1979) Catalytic action of L-methionine γ-lyase on selenomethionine and selenols. Biochemistry 18: 407-410

    Google Scholar 

  • Ewbank E & Maraite H (1990) Conversion of methionine to phytotoxic 3-methlthiopropionic acid by Xanthomonas campestris pv. manihotis. J. Gen. Microbiol. 136: 1185-1189

    Google Scholar 

  • Ferchichi M, Hemme D & Nardi M (1987) Na+-stimulated transport of L-methionine in Brevibacterium linens CNRZ 918. Appl. Environ. Microbiol. 53: 2159-2164

    Google Scholar 

  • Ferchichi M, Hemme D, Nardi M & Pamboukdjian N (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. J. Gen. Microbiol. 131: 715-723

    Google Scholar 

  • Forss DA (1979) Review of the progress of dairy science: Mechanisms of formation of aroma compounds in milk and milk products. J. Dairy Res. 46: 691-706

    Google Scholar 

  • Foucaud C, Kunji ERS, Hagting A, Richard J, Konings WN, Desmazeaud M & Poolman B (1995) Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di-and tripeptides. J. Bacteriology 177: 4652-4657

    Google Scholar 

  • Fox PF, Law J, McSweeney PLH & Wallace J (1996) Biochemistry of cheese ripening. In: Fox PF (Ed) Cheese: Chemistry, Physics, and Microbiology, Vol. 1 (pp. 389-438). Chapman & Hall, New York

    Google Scholar 

  • Fox PF, Wallace JM, Morgan S, Lynch CM, Niland EJ & Tobin J. (1996) Acceleration of cheese ripening. Antonie van Leeuwenhoek 70: 271-297

    Google Scholar 

  • Franken DG, Blom HJ, Boers GHJ, Tangerman AT, Thomas CMG & Trijbels FJM (1996) Thiamine (Bl) supplementation does not reduce fasting blood homocysteine concentration in most homozygotes for homocystinuria. Biochimica et Biophysica Acta 1317:101-104

    Google Scholar 

  • Gao S, Mooberry ES & Steele JL (1998) Use of 13C nuclear magnetic resonance and gas chromatography to examine methionine catabolism by lactococci. Appl. Environ. Microbiol. 64: 4670-4675

    Google Scholar 

  • Gao S, Oh DH, Broadbent JR, Johnson ME, Weimer BC & Steele JL (1997) Aromatic amino acid catabolism by lactococci. Lait 77:371-381

    Google Scholar 

  • Greene RC (1996) Biosynthesis of methionine In: Neidhardt FC et al. (Eds) Escherichia coli and Salmonella Cellular and Molecular Biology Vol 1 (pp 542-560). ASM Press, Washington, DC

    Google Scholar 

  • Greene RC, Williams RD, Kung HF, Spears C & Weissbach H (1973) Effects of methionine and vitamin B12 on the activities of methionine biosynthetic enzymes in metJ mutants of Escherichia coli K12. Arch. Biochem. Biophys. 158: 249-256

    Google Scholar 

  • Grill H, Patton S & F. CJ (1966) Aroma significance of sulfur compounds in surface-ripened cheese. J. Dairy Sci. 49: 409-413

    Google Scholar 

  • Grosch W (1993) Detection of potent odourants in foods by aroma extract dilution analysis. Trends in Food Sci. Technol. 4: 68-73

    Google Scholar 

  • Grosch W (1994) Determination of potent odourants in foods by aroma extract dilution analysis (AEDA) and calculation of odour activity values (OAVs). Flavour and Fragrance J. 9: 147-158

    Google Scholar 

  • Guggenheim S (1971) β-Cystathionase (Salmonella). Methods in Enzymology 17B: 439-442

    Google Scholar 

  • Guth H & Grosch W (1993) Identification of potent odourants in static headspace samples of green and black tea powders on the basis of aroma extract dilution analysis (AEDA). Flavour and Fragrance J. 8: 173-178

    Google Scholar 

  • Harper WJ, Carmona A & Kristoffersen T (1971) Protein degradation in Cheddar cheese slurries. J. Food Sci. 36: 503-506

    Google Scholar 

  • Harper WJ & Kristoffersen T (1970) Biochemical aspects of flavor development in Cheddar cheese slurries. J. Agric. Food Chem. 18: 563-566

    Google Scholar 

  • Hori H, Takabayashi K, Orvis L, Carson DA & Nobori T (1996) Gene cloning and characterization of Pseudomonas putida L-methionine-α-deamino-γ-mercaptometha ne-lyase. Cancer Res. 56:2116-2122

    Google Scholar 

  • Ince JE & Knowles CJ (1986) Ethylene formation by cultures of Escherichia coli. Arch. Microbiol. 146: 151-158

    Google Scholar 

  • Inoue H, Inagaki K, Eriguchi S, Tamura T, Esaki N, Soda K & Tanaka H (1997) Molecular characterization of the mde operon involved in L-methionine catabolism of Pseudomonas putida. J. Bacteriol. 179: 3956-3962

    Google Scholar 

  • Inoue H, Inagaki K, Sugimoto M, Esaki N, Soda K & Tanaka H (1995) Structural analysis of the L-methionine γ-lyase gene from Pseudomonas putida. J. Biochem. 117: 1120-1125

    Google Scholar 

  • Jollivet N, Bézenger M-C, Vayssier Y & Belin J-M (1992) Production of volatile compounds in liquid cultures by six strains of coryneform bacteria. Appl. Microbiol. Biotechnol. 36: 790-794

    Google Scholar 

  • Juillard V, Guillot A, Le Bars D & Gripon J-C (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl. Environ. Microbiol. 64: 1230-1236

    Google Scholar 

  • Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon J-C & Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61: 3024-3030

    Google Scholar 

  • Kadner R (1974) Transport systems for L-methionine in Escherichia coli. J. Bacteriol. 117: 232-241

    Google Scholar 

  • Kadner R (1975) Regulation of methionine transport activity in Escherichia coli. J. Bacteriol. 122: 110-119

    Google Scholar 

  • Kadner RJ & Watson WJ (1974) Methionine transport in Escherichia coli: Physiological and genetic evidence for two uptake systems. J. Bacteriol. 119: 401-409

    Google Scholar 

  • Kadota H & Ishida Y (1972) Production of volatile sulfur compounds by microorganisms. Annual Rev. Microbiol. 26: 127-138

    Google Scholar 

  • Keith ES & Powers JJ (1968) Determination of flavor threshold levels and subthreshold, additive, and concentration effects. J. Food Sci. 33:213-218

    Google Scholar 

  • Kreis W & Hession C (1973) Isolation and purification of L-methionine-α-deamino-γ-mercaptomethane-lyase (L-methionase) from Clostridium sporogenes. Cancer Res. 33: 1862-1865

    Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic system of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187-221

    Google Scholar 

  • Laber B, Clausen T, Humber R, Messerschmidt A, Egner U, Müller-Fahrnow A & Pohlenz H-D (1996) Cloning, purification, and crystallization of Escherichia coli cystathionine β-lyase. FEBS Lett. 379: 94-96

    Google Scholar 

  • Lamberet G, Auberger B & Bergére JL (1997a) Aptitude of cheese bacteria for volatile S-methyl thioester synthesis I. Effect of substrates and pH on their formation by Brevibacterium linens GC171. Appl. Microbiol. Biotechnol. 47: 279-283

    Google Scholar 

  • Lamberet G, Auberger B & Bergère JL (1997b) Aptitude of cheese bacteria for volatile S'-methyl thioester synthesis. II. Comparison of coryneform bacteria, Micrococcaceae and some lactic acid bacteria starters. Appl. Microbiol. Biotechnol. 48: 393-397

    Google Scholar 

  • Lane CN & Fox PF (1997) Role of starter enzymes during ripening of Cheddar cheese made from pasteurized milk under controlled microbiological conditions. Int. Dairy J. 7: 55-63

    Google Scholar 

  • Law BA & Sharpe ME (1978) Formation of methanethiol by bacteria isolated from raw milk and Cheddar cheese. J. Dairy Res. 45:267-275

    Google Scholar 

  • Law J & Haandrikman A (1997) Proteolytic enzymes of lactic acid bacteria. Int. Dairy J. 7: 1-11

    Google Scholar 

  • Lee CW & Richard J (1984) Catabolism of L-phenylalanine by some microorganisms of cheese origin. J. Dairy Res. 51: 461-469

    Google Scholar 

  • Libbey LM, Bills DD & Day EA (1963) A technique for the study of lipid-soluble food flavor volatiles. J. Dairy Sci. 28: 329-333

    Google Scholar 

  • Libbey LM & Day EA (1964) Cheddar cheese flavor: gas chromatography and mass spectral analysis of the neutral components of the aroma fraction. J. Food Sci. 29: 583-589

    Google Scholar 

  • Lindsay RC & Rippe JK (1986) Enzymic generation of methanethiol to assist in the flavor development of Cheddar cheese and other foods. In: Parliment H & Croteau R (Eds) Biogeneration of Aromas (pp. 286-308). American Chemical Society, Washington, DC

    Google Scholar 

  • Lockwood BC & Coombs GH (1991) Purification and characterization of methionine γ-lyase from Trichomonas vaginalis. Biochem. J. 279: 675-692

    Google Scholar 

  • Manning DJ & Robinson HM (1973) The analysis of volatile substances associated with Cheddar-cheese aroma. J. Dairy Res. 40: 63-75

    Google Scholar 

  • Manning DJ (1974) Sulphur compounds in relation to Cheddar cheese flavour. J. Dairy Res. 41: 81-87

    Google Scholar 

  • Manning DJ, Chapman HR & Hosking ZD (1976) The production of sulfur compounds in Cheddar cheese and their significance in flavor development. J. Dairy Res. 43: 313-320

    Google Scholar 

  • Manning DJ (1979) Chemical production of essential Cheddar flavour compounds. J. Dairy Res. 46: 531-537

    Google Scholar 

  • Maxon ME, Redfield B, Cai XY, Shoeman R, Fujita K, Fisher W, Stauffer G, Weissbach H & Brot N (1989) Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. Proceedings of the National Academy of Science USA 86: 85-89

    Google Scholar 

  • McGugan WA (1975) Cheddar cheese flavor. A review of current progress. J. Agric. Food Chem. 23: 1047-1050

    Google Scholar 

  • McKie AE, Edlind T, Walker J, Mottram JC & Coombs GH (1998) The primitive protozoan Trichomonas vaginalis contains two methionine γ-lyase genes that encode members of the γ-family of pyridoxal 5′-phosphate-dependent enzymes. J. Biol. Chem. 273:5549-5556

    Google Scholar 

  • McSweeney PLH & Fox PF (1996) Cheese: Methods of chemical analsyis. In: Fox PF (Ed) Cheese: Chemistry, Physics, and Microbiology, Vol. 1 (pp. 389-438). Chapman & Hall, New York

    Google Scholar 

  • Milner L, Whitfield C & Weissbach H (1982) Effect of L-methionine and vitamin B12 on methionine biosynthesis in E. coli. Archives of Biochem. Biophys. 133: 413-419

    Google Scholar 

  • Milo C & Reineccius GA (1997) Identification and quantification of potent odorants in regular-fat and low-fat milk Cheddar cheese. J. Agric. Food Chem. 45: 3590-3594

    Google Scholar 

  • Miwatani T, Omukai Y & Nakada D (1954) Enzymatic cleavage of methionine and homocysteine by bacteria. Medical Journal of Osaka University 5: 347-352

    Google Scholar 

  • Montie DB & Montie TC (1975) Methionine transport in Yersinia pestis. J. Bacteriol. 124: 296-306

    Google Scholar 

  • Müdler H (1952) Taste of flavor forming substances in cheese. Netherlands Milk and Dairy Journal 6: 157

    Google Scholar 

  • Mulligan JT, Margolin W, Krueger JH & Walker GC (1982) Mutations affecting regulation of methionine biosynthetic genes isolated by use of met-lac fusions. J. Bacteriol. 151: 609-619

    Google Scholar 

  • Nakayama T, Esaki N & Lee WJ (1984a) Purification and properties of L-methionine γ-lyase from Aeromonas sp. Agric. Biol. Chem. 48: 2367-2369

    Google Scholar 

  • Nakayama T, Esaki N, Sugie K, Beresov TT, Tanaka H & Soda K (1984b) Purification of bacterial L-methionine γ-lyase. Anal. Biochem. 138: 421-424

    Google Scholar 

  • Ohigashi K, Tsunetoshi A & Ichihara K (1951) The role of pyridoxal in methyl mercaptan formation, partial purification and resolution of methioninase. Medical Journal of Osaka University 2:111-117

    Google Scholar 

  • Ornitake J (1938) On the formation of methylmercaptan from L-cystine and L-methionine by bacteria. J. Osaka Med. Assoc. 37: 263-270

    Google Scholar 

  • O'Shea BA, Uniacke-Lowe T & Fox PF (1996) Objective assessment of Cheddar cheese quality. Int. Dairy J. 6: 1135-1147

    Google Scholar 

  • Ozaki H & Shiio I (1982) Methionine biosynthesis in Brevibacterium flavum: Properties and essential role of O-acetylhomoserine sulfhydrylase. J. Biochem. 91: 1163-1171

    Google Scholar 

  • Park YM & Stauffer GV (1987) Cloning and characterization of the metC gene from Salmonella typhimurium LT2. Gene 60: 291-297

    Google Scholar 

  • Parliment TH, Kolor MG & Rizzo DJ (1982) Volatile components of Limburger cheese. J. Agric. Food Chem. 30: 1006-1008

    Google Scholar 

  • Patton S & Josephson DV (1957) A method for determining significance of volatile flavor compounds in foods. Food Res. 22: 316-318

    Google Scholar 

  • Paulus H (1993) Biosynthesis of the aspartate family of amino acids. In: Sonenshein AL, Hoch JA & Losick R (Eds) Bacillus and other Gram-positive bacteria: biochemistry, physiology, and molecular genetics (pp. 237-267). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Piggot PJ & Hoch JA (1985) Revised genetic linkage map of Bacillus subtilis. Microbiol. Rev. 49: 158-179

    Google Scholar 

  • Saint-Girons I, Parsot C, Zakin MM, Barzu O & Cohen GN (1988) Methionine biosynthesis in Enterobacteriacea: Biochemical, regulatory, and evolutionary aspects. Critical Rev. Biochem. 23: S1-S42

    Google Scholar 

  • Scislowski PWD, Bremer J, Thienen WIAD & Davis EJ (1989) Heart mitochondria metabolize 3-methylthiopropionate to CO2 and methanethiol. Arch. Biochem. Biophy. 273: 602-605

    Google Scholar 

  • Scislowski PWD & Pickard K (1993) Methionine transamination-metabolic function and subcellular comparmentation. Molec. Cell. Biochem. 129: 39-45

    Google Scholar 

  • Sharpe ME, Law BA & Phillips BA (1977) Methanethiol production by coryneform bacteria: Strains from dairy and human skin sources and Brevibacterium linens. J. Gen. Microbiol. 101: 345-349

    Google Scholar 

  • Shipston N & Bunch AW (1989) The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli. J. Gen. Microbiol. 135: 1489-1497

    Google Scholar 

  • Smacchi E & Gobbetti M (1998) Purification and characterization of cystathionine γ-lyase from Lactobacillus fermentum DT41. FEMS Microbiol. Lett. 166: 197-202

    Google Scholar 

  • Smid EJ, Driessen JM & Konings WN (1989) Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. J. Bacteriol. 171: 292-298

    Google Scholar 

  • Soda K (1987) Microbial sulfur amino acids: an overview. Methods Enzymol. 143:453-459

    Google Scholar 

  • Soda K, Tanaka H & Esaki N (1983) Mulitfunctional biocatalysis: methionine γ-lyase. TIBS 8: 214-217

    Google Scholar 

  • Swaisgood H (1992) Chemistry of the casiens. In: Fox PF (Ed) Advanced Dairy Chemistry: Proteins, Vol. 1 (pp 63-110). Elsevier Applied Science, New York

    Google Scholar 

  • Tanaka H, Esaki N & Soda K (1985) A versatile bacterial enzyme: L-methionine γ-lyase. Enzyme Microb. Technol. 7: 530-537

    Google Scholar 

  • Tanaka H, Esaki N & Soda K (1977) Properties of L-methionine γ-lyase from Pseudomonas ovalis. Biochemistry 16: 100-106

    Google Scholar 

  • Tynkkynen S, Buist G, Kunji W, Kok J, Poolman B, Venema G & Haandrikman A (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523-7532

    Google Scholar 

  • Urbach G (1995) Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int. Dairy J. 5: 877-903

    Google Scholar 

  • Urbach G (1993) Relations between cheese flavour and chemical composition. Int. Dairy J. 3: 389-422

    Google Scholar 

  • Urbanowski ML & Stauffer GV (1987) Regulation of the metR gene of Salmonella typhimurium. J. Bacteriol. 169: 5841-5844

    Google Scholar 

  • Urbanowski ML, Stauffer LT, Plamann LS & Stauffer GV (1987) A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 169: 1391-1397

    Google Scholar 

  • Urbanowski ML & Stauffer GV (1989) Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. J. Bacteriol. 171: 5620-5629

    Google Scholar 

  • Uren JR (1987) Cystathionine β-lyase from Escherichia coli. Methods Enzymol. 143: 483-485

    Google Scholar 

  • van den Bosch S, van't Land E & Stoffelsma J (1982) US patent 4332829

  • Vandeweghe P & Reineccius GA (1990) Comparison of flavor isolation techniques applied to Cheddar cheese. J. Agric. Food Chem. 38: 1549-1552

    Google Scholar 

  • Weimer B, Dias B, Ummadi M, Broadbent J, Brennand C, Jaegi J, Johnson M, Milani F, Steele J & Sisson DV (1997) Influence of NaCl and pH on intracellular enzymes that influence Cheddar cheese ripening. Lait 77: 383-398

    Google Scholar 

  • Wijesundera C & Urbach G (1993) Flavor of Cheddar cheese. Final report to the Dairy Research and Development Corporation, Project CSt66

  • Weiderholt KM & Steele JL (1994) Glutathione accumulation in lactococci. J. Dairy Sci. 77: 1183-1188

    Google Scholar 

  • Wu W-F, Urbanowski ML & Stauffer GV (1992) Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J. Bacteriol. 174: 4833-4837

    Google Scholar 

  • Yamamagata S, D'Andrea RJ, Fujisaki S, Isaji M & Nakamura K (1993) Cloning and bacterial expression of the CYS3 gene encoding cystathionine γ-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein. J. Bacteriol. 175: 4800-4808

    Google Scholar 

  • Yang WT & Min DB (1994) Dynamic headspace analyses of volatile compounds of Cheddar and Swiss cheese during ripening. J. Food Sci. 59: 1309-1312

    Google Scholar 

  • Yocum RR, Perkins JB, Howitt CL & Pero J (1996) Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis. J. Bacteriol. 178: 4604-4610

    Google Scholar 

  • Yvon M, Thirouin S, Rijnen L, Fromentier D & Gripon JC (1997) An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol. 63: 414-419

    Google Scholar 

  • Zdych E, Peist R, Reidl J & Boos W (1995) MalY of Escherichia coli is an enzyme with the activity of a βC-S lyase (cystathionase). J. Bacteriol. 177: 5035-5039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Weimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weimer, B., Seefeldt, K. & Dias, B. Sulfur metabolism in bacteria associated with cheese. Antonie Van Leeuwenhoek 76, 247–261 (1999). https://doi.org/10.1023/A:1002050625344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002050625344

Keywords

Navigation