Skip to main content
Log in

Expression of the Ubiquitin Genes in Brain of Normal and Fe/Dextran Injected Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Using in situ hybridization techniques with an RNA probe coding for approximately 3.5 repeats of ubiquitin, corresponding to the polyubiquitin genes, we were able to demonstrate that under normal conditions the expression of the ubiquitin genes predominates specially in regions CA1, CA2 and CA3 of the hippocampus, in the dentate gyrus and in Purkinje cells of the cerebellum, being less prominent in neuronal cell bodies of the cerebral cortex. When the animals were submitted to an acute oxidative stress by injection of Fe/Dextran, the hybridization signal was apparently increased in the above mentioned regions of the hippocampus and in the cerebral cortex. On the other hand, the animals chronically injected with Fe/Dextran showed a highly intense gene expression in the cerebral cortex and in the cerebellum, particularly in the granular cell layer of this structure. The hybridization signal of the transcripts was absent in the Purkinje cells. The results suggest that the expression of the ubiquitin genes by CNS neurons depends on the anatomical location of the cells and that it increases as a consequence of the oxidative stress conditions to which they are submitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ozkaynak, E., Finley, D., and Varshavsky, A. 1984. The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312:663–666.

    Google Scholar 

  2. Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A., and Vuust, J. 1985. The human ubiquitin multigene family: Some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4:755–759.

    Google Scholar 

  3. Rechsteiner, M. 1987. Ubiquitin-mediated pathways for intracellular proteolysis. Ann. Rev. Cell Biol. 3:1–30.

    Google Scholar 

  4. Adamo, A. M., Besio Moreno, M., Soto, E. F., and Pasquini, J. M. 1994. Ubiquitin-Protein conjugates in different structures of the Central Nervous System of the rat. J. Neurosci. Res. 38:358–364.

    Google Scholar 

  5. Ozkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 6:1429–1439.

    Google Scholar 

  6. Monia, B. P., Ecker, D. J., and Crooke, S. T. 1990. New perspectives on the structure and function of ubiquitin. Bio/technology 8:209–215.

    Google Scholar 

  7. Tan, Y., Bishoff, S., and Riley, M. 1993. Ubiquitins revisited: Further examples of within-and between-locus concerted evolution. Mol. Phylogenet. Evol. 2:351–360.

    Google Scholar 

  8. Finley, D., Bartel, B., and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401.

    Google Scholar 

  9. Redman, K. L., and Rechsteiner, M. 1989. Identification of the long ubiquitin extension as ribosomal protein S27 a. Nature 338:438–440.

    Google Scholar 

  10. Finley, D., Ozkaynak, E., and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48:1035–1046.

    Google Scholar 

  11. Denhardt, D. T. 1966. A membrane filter technique for detection of complementary DNA. Biochem. Biophys. Res. Commun. 23:641–646.

    Google Scholar 

  12. Ciechanover, A., and Schwartz, A. L. 1994. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 8:182–191.

    Google Scholar 

  13. Rechsteiner, M. 1991. Natural substrates of the ubiquitin proteolytic pathway. Cell 66:615–618.

    Google Scholar 

  14. Varshavsky, A. 1992. The N-End rule. Cell 69:725–735.

    Google Scholar 

  15. Adamo, A. M., and Pasquini, J. M. 1995. Ubiquitin-protein conjugate formation during degradation of CNS oxidized proteins. J. Neurochem. 64Suppl. S71D.

  16. Finley, D., Ciechanover, A., and Varshavsky, A. 1984. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55.

    Google Scholar 

  17. Fraser, J., Luu, H. A., Neculcea, J., Thomas, D. Y., and Storms, R. K. 1991. Ubiquitin gene expression: response to environmental changes. Curr. Genet. 20:17–23.

    Google Scholar 

  18. Youdim, M. B. H. ed. 1988. Brain Iron: Neurochemical and Behavioral Aspects. Taylor and Francis, London.

    Google Scholar 

  19. Roskams, A. J. I., and Connor, J. R. 1992. Transferrin receptor expression in myelin deficient (md) rats. J. Neurosci. 31:421–427.

    Google Scholar 

  20. Hill, J. M., Ruff, M. R., Weber, R. J. and Pert, C. B. 1985. Transferrin receptors in rat brain: Neuropeptide-like pattern and relationship to iron distribution. Proc. Natl. Acad. Sci. USA. 82:4553–4557.

    Google Scholar 

  21. Pullen, R. G. L., Candy, J. M., Morris, C. M., Taylor, G., Keith, A. B., and Edwardson, J. A. 1990. Gallium-67 as a potential marker for aluminum transport in rat brain: implications for Alzheimer's disease. J. Neurochem. 55:251–259.

    Google Scholar 

  22. Mash, D. C., Pablo, J., Flynn, D. D., Efange, S. M. N., and Weiner, W. J. 1990. Characterization and distribution of transferrin receptors in the rat brain. J. Neurochem. 55:1972–1979.

    Google Scholar 

  23. Noga, M., and Hayashi, T. 1996. Ubiquitin gene expression following transient forebrain ischemia. Mol. Brain Res. 36:261–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamo, A.M., Besio Moreno, M.A., Carrasco, A. et al. Expression of the Ubiquitin Genes in Brain of Normal and Fe/Dextran Injected Rats. Neurochem Res 22, 345–350 (1997). https://doi.org/10.1023/A:1027335021812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027335021812

Navigation