Skip to main content
Log in

Apoptosis and oxidative status in peripheral blood mononuclear cells of diabetic patients

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We have compared the concentrations of intracellular glutathione (GSH), glutathione-dependent antioxidative enzymes, the cell death rate and immunophenotype profile of peripheral blood mononuclear cells (PBMC) from healthy donors and from patients with insulin-dependent type I (IDDM) or non insulin-dependent type II (NIDDM) diabetes mellitus. The IDDM and NIDDM patients had above-normal absolute lymphocyte counts, whereas the percentages of CD3, CD4 and CD8 T lymphocytes were significantly reduced. In contrast, the absolute number and percentage of B lymphocytes was higher in diabetic patients than in healthy donors. The low intracellular reduced glutathione (GSH) and the unbalanced profile of key enzymes involved in GSH metabolism, gamma glutamyltransferase (γ-GT) and glutathione-S-transferase (GST), account for the increased oxidative status of PBMC from diabetic patients. The plasma membranes of PBMC from diabetic patients were less permeable to propidium iodide than those of PBMC from healthy donors, indicating that the apoptotic cell death rate was lower in the cells from diabetic patients. These differences are potentially useful markers of pathogenic metabolic changes which occur during clinical diabetes and if they are confirmed could be used to identify the onset of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itoh M. Immunological aspects of diabetes mellituts: prospects for pharmacological modification. Pharmacol Ther 1989; 44: 351-406.

    Google Scholar 

  2. Faustman D, Eisenbarth G, Daley J, Breitmeyer J. Abnormal T-lymphocyte subsets in type I diabetes. Diabetes 1989; 38: 1462-1468.

    Google Scholar 

  3. Benoist C, Mathis D. Cell death mediators in autoimmune diabetes—no shortage of suspects. Cell 1997; 89: 1-3.

    Google Scholar 

  4. Reeves WG, Wilson RM. Infection, immunity and diabetes. Alberti KG, DeFronzo RA, Keen H and Zimmet P, eds. International Textbook of Diabetes Mellitus. John Wiley & Sons, 1992: 1165-1171.

  5. Faustman D, Eisenbarth G, Breitmeyer J. Analysis of T lymphocyte subsets in all stages of diabetes. J Autoimmun Suppl 1990; 1: 111-116.

    Google Scholar 

  6. Al-Kassab AS, Raziuddin S. Immune activation and T cell subset abnormalities in circulation of patients with recently diagnosed type I diabetes mellitus. Clin Exp Immunol 1990; 81: 267-271.

    Google Scholar 

  7. Pontesilli O, Chase HP, Carotenuto P, Herberger MJ, Hayward AR. T-lymphocyte subpopulations in insulin-dependent (type I) diabetes mellitus. Clin Exp Immunol 1986; 63: 68-72.

    Google Scholar 

  8. Roep BO, De Vries RR. T-lymphocytes and the pathogenesis of type 1 (insulin-dependent diabetes mellitus. Eur J Clin Invest 1992; 22: 697-711.

    Google Scholar 

  9. Munoz A, Gallart T, Usac EF, Fernandez-Alvarez J, Vinas O, Somoza N, Barcelo J, Gomis R. Anti-islet cell and anti-insulin antibody production by CD5+ and CD5-B lymphocytes in IDDM. Diabetologia 1995; 38: 62-72.

    Google Scholar 

  10. Al-Sakkaf L, Pozzilli P, Tarn AC, Schwarz G, Gale EA, Bottazzo GF. Persistent reduction of CD4/CD8 lymphocyte ratio and cell activation before the onset of type 1 (insulin-dependent) diabetes. Diabetologia 1989; 32: 322-325.

    Google Scholar 

  11. Lorenzi M, Montisano DF, Toledo S, Wong HC. Increased single strand breaks in DNA of lymphocytes from diabetic subjects. J Clin Invest 1987; 79: 656-656.

    Google Scholar 

  12. Barbieri D, Grassilli E, Monti D, Salvioli S, Franceschini MG, Franchini A, Bellesia E, Salomoni P, Negro P, Capri M, Troiano L, Cossarizza A, Franceschi C. D-ribose and deoxy-D-ribose induce apoptosis in human quiescent peripheral blood mononuclear cells. Bioch Biophys Res Commun 1994; 201: 1109-1116.

    Google Scholar 

  13. Lorenzi M, Montisano DF, Toledo S, Barrieux A. High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest 1986; 77: 322-325.

    Google Scholar 

  14. Ceriello A, dello Russo P, Amstadt P, Cerutti P. High glucose induces antioxidant enzymes in human endothelial cells in culture: evidence linking hyperglycemia and oxidative stress. Diabetes 1996; 45: 471-477.

    Google Scholar 

  15. Kletsas D, Barbieri D, Stathakos D, Botti B, Bergamini S, Tomasi A, Monti D, Malorni W, Franceschi C. The highly reducing sugar 2-deoxy D ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochem Biophys Res Commun 1998; 243: 456-425.

    Google Scholar 

  16. Ahmed S, Clark A, Matthews DR. Progressive decline of β-cell function in non-insulin-dependent diabetes. Current Opinion in Endocrinology & Diabetes 1998; 4: 300-307.

    Google Scholar 

  17. Avruch J. A signal for β-cell failure. Nature 1998; 391: 846-847.

    Google Scholar 

  18. Mauricio D, Mandrup-Poulsen T. Apoptosis and the pathogenesis of IDDM: a question of life and death. Diabetes 1998; 47: 1537-1543.

    Google Scholar 

  19. Giordano C, De Maria R, Stassi G, Todaro M, Richiusa P, Giordano M, Testi R, Galluzzo A. Defective expression of the apoptosis-inducing CD95 (Fas/APO-1) molecule on T and B cells in IDDM. Diabetologia 1995; 38: 1449-1454.

    Google Scholar 

  20. Giordano C, Stassi G, Todaro M, De Maria R, Richiusa P, Scorsone A, Giordano M, Galluzzo A. Low bcl-2 expression and increased spontaneous apoptosis in T-lymphocytes from newly-dignosed IDDM patients. Diabetologia 1995b; 38: 953-958.

    Google Scholar 

  21. Gougeon ML, Lecoeur H, Duliost A, et al. Programmed cell death and AIDS: significance of T-cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc Natl Acad Sci USA 1996; 91: 9431-9435.

    Google Scholar 

  22. McKenna SL, Cotter TG. Functional aspects of apoptosis in hematopoiesis and consequences of failure. Adv Cancer Res 1997; 71: 121-164.

    Google Scholar 

  23. Dianzani U, Bragardo M, DiFranco D, Alliaudi C, Scagni P, Buonfiglio D, Redoglia V, Bonissoni S, Correra A, Dianzani I, Ramenghi U. Deficiency of the Fas apoptosis pathway without Fas gene mutations in pedriatic patients with autoimmunity/lymphoproliferation. Blood 1997; 89: 2871-2879.

    Google Scholar 

  24. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera. Oxidative damage to DNA in diabetes mellitus. Lancet 1996; 347: 444-445.

    Google Scholar 

  25. Anderson D, Yu TW, Phillips BJ, Schmezer P. The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutat Res 1994; 307: 261-271.

    Google Scholar 

  26. Bashir S, Harris G, Denman MA, Blake DR, Winyard PG. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 1993; 52: 659-666.

    Google Scholar 

  27. Dröge W, Schulze-Osthoff K, Mihm S, Galter D, Schenk H, Eck HP, Roth S, Gmünder H. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J 1994; 8: 1131-1138.

    Google Scholar 

  28. Morrow CS, Cowan KH. Glutathione-S-transferase and drug resistance. Cancer cells 1990; 2: 15-22.

    Google Scholar 

  29. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313-4320.

    Google Scholar 

  30. Harris ED. Regulation of antioxidant enzymes. FASEB J 1992; 6: 2675-2683.

    Google Scholar 

  31. McCaughan FM, Brown AL, Harrison DJ. The effect of glutathione-S-transferase P on the growth of the Jurkat human T cell line. J Pathol 1994; 172: 357-362.

    Google Scholar 

  32. Graber R, Losa GA. Subcellular localization and kinetic properties of phosphatidyl-inositol 4,5 bisphosphate phospholipase C and inositol phosphates enzymes from human peripheral blood mononuclear cells. Enzyme 1989; 14: 17-26.

    Google Scholar 

  33. Graber R, Losa GA. Subcellular localization of inositide enzymes in established T cell lines and activated lymphocytes. Anal Cell Pathol 1993; 5: 1-16.

    Google Scholar 

  34. Morgenstern R, Meijer J, DePierre JW, Ernster J. Characterization of rat-liver microsomal glutathione-S-transferase activity. Eur J Biochem 1980; 104: 167-174.

    Google Scholar 

  35. Losa GA, Graber R. Modulation of plasma membrane enzymes during apoptosis of human leukemic T-cells induced by glucocorticoids. Fund Clin Immunol 1995; 3: 71-73.

    Google Scholar 

  36. Graber R, Losa GA. Changes in the activities of signal transduction and transport membrane enzymesin CEM lymphoblastoid cells by glucocorticoid-induced apoptosis. Anal cell Pathol 1995; 8: 159-176.

    Google Scholar 

  37. Afanasyev VN, Korol BA, Matylevich NP, Pechatnikov VA, Umansky SR. The use of flow cytometry for the investigation of cell death. Cytometry 1993; 14: 603-609.

    Google Scholar 

  38. Graber R, Farine JC, Losa GA. Calcium dobesilate protects human peripheral blood mononuclear cells from oxidation and apoptosis. Apoptosis 1998; 3: 41-49.

    Google Scholar 

  39. Graber R, Losa GA. Apoptosis in human lymphoblastoid cells induced by acivicin, a specific γ-glutamyltransferase inhibitor. Int J Cancer 1995; 62: 443-448.

    Google Scholar 

  40. Petersen LD, Duinkerken G, Bruining GJ, vanLier RAW, de Vries RRP, Roep BO. Increased numbers of in vivo activated T cells in patients with recent onset insulin-dependent diabetes mellitus. J of Autoimmunity 1996; 9: 731-737.

    Google Scholar 

  41. Fuss IJ, Strober W, Dale JK, Fritz S, Pearlstein GR, Puck JM, Lenardo MJ, Straus SE. Characteristic T helper 2 T cell cytokine abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked by defective apoptosis and humoral autoimmunity. J Immunol 1997; 157: 1912-1918.

    Google Scholar 

  42. Lamhamedi-Cherradi SE, Luan JJ, Eloy L, Fluteau G, Bach JF, Garchon H. Resistance of T-cells to apoptosis in autoimmune diabetic (NOD) mice is increased early in life and is associated with dysregulated expression of Bcl-x. Diabetologia 1998; 41: 178-184.

    Google Scholar 

  43. Perego P, Paolicchi A, Tongiani R, Pompella A, Tonarelli P, Carenini N, Romanelli S, Zunino F. The cell-specific anti-proliferative effect of reduced glutathione is mediated by γ-glutamyltranspeptidase-dependent extracellular pro-oxidant resctions. Int J Cancer 1997; 71: 246-250.

    Google Scholar 

  44. McMillan DE, Utterback NG, Lapuma J. Reduced erythrocyte deformability in diabetes. Diabetes 1978; 27: 895-900.

    Google Scholar 

  45. Miller JA, Gruallese E, Bunn HF. Non-enzymatic glycosilation of erythrocytic membrane proteins. Relevance to diabetes. J Clin Invest 1980; 65: 896-902.

    Google Scholar 

  46. Yue DK, McLennan SV, Turtle JR. Pathogenesis of diabetic microangiopathy: the roles of endothelial cells and basement membrane abnormalities. Diabetic Medicine 1992; 9: 218-223.

    Google Scholar 

  47. Brownlee M. Glycation and diabetic complications. Diabetes 1994; 43: 836-841.

    Google Scholar 

  48. Hempel A, Maasch C, Heintze U, Lindschau C, Dietz R, Luft FC, Halle H. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res 1997; 81: 363-371.

    Google Scholar 

  49. Watala C. Hyperglycaemia alters the physico-chemical properties of proteins in erythrocyte membranes of diabetic patients. Int J Biochem 1992; 24: 1755-1761.

    Google Scholar 

  50. Watala C, Gwozdzinski K, Pluskota E, Walkowiak B, Trojanowski Z, Cierniewski CS. Diabetes mellitus alters the effect of peptide and protein ligands on membrane fluidity of blood platelets. Thromb Haemostat 1996; 75: 147-153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graber, R., Farine, J.C., Fumagalli, I. et al. Apoptosis and oxidative status in peripheral blood mononuclear cells of diabetic patients. Apoptosis 4, 263–270 (1999). https://doi.org/10.1023/A:1026408409916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026408409916

Navigation