Skip to main content
Log in

Current velocity and invertebrate grazing regulate stream algae: results of an in situ electrical exclusion

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Current velocity is a pervasive feature of lotic systems, yet this defining environmental variable is rarely examined as a factor for regulating stream herbivory. To investigate how current modifies herbivory in the upper Colorado River, U.S.A., loops of electrified fencing wire were used to reduce in situ grazer densities on 30 × 30 cm tile substrates. After 45 d, electrified tiles had significantly fewer grazers (P = 0.03) and >2X more algal biomass than controls (P = 0.0002). Reduced grazing on electrified tiles yielded periphytic assemblages having more diatoms and chlorophytes, as well as greater algal species richness. Current velocity effects alone did not significantly regulate algal abundance; however, the interaction between current velocity and grazer exclusion resulted in more algae in slow vs. fast current (P = 0.02). Grazer abundances were similar between fast and slow current velocities, suggesting that grazers in the Colorado River differ in their ability to regulate algae across the current velocity gradient. Our results indicate that stream current-mediated herbivory in streams may be more important than is generally recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1992. Standard methods for the examination of water and waste water. 18th. edition. American Public Health Association, Washington D.C.

    Google Scholar 

  • Arens, W., 1989. Comparative functional morphology of the mouthparts of stream animals feeding on epilithic algae. Archiv für Hydrobiol. Suppl. 83: 253–354.

    Google Scholar 

  • Bertness, M. D. & R. Callaway, 1994. Positive interactions in communities. Trends Ecol. Evol. 9: 191–193.

    Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, J.R., M. I. Bothwell & R. L. Lowe (eds). Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego: 31–56.

    Google Scholar 

  • Biggs, B. J. F., D. G. Goring & V. I. Nikora, 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol. 34: 598–607.

    Google Scholar 

  • Biggs, B. J. F. & C. W. Hickey, 1994. Periphyton responses to a hydraulic-gradient in a regulated river in New Zealand. Freshwat. Biol. 32: 49–59.

    Google Scholar 

  • Brown, G. G., R. H. Norris, W. A. Maher & K. Thomas, 2000. Use of electricity to inhibit macroinvertebrate grazing of epilithon in experimental treatments in flowing waters. J. N. Am. Benthol. Soc. 19: 176–185.

    Google Scholar 

  • Cardinale, B. J., K. Nelson & M. A. Palmer, 2000. Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91: 175–183.

    Google Scholar 

  • DeNicola, D. M. & C. D. McIntire, 1990. Effects of substrate relief on the distribution of periphyton in laboratory streams. 1. Hydrology. J. Phycol. 26: 624–633.

    Google Scholar 

  • DeNicola, D.M. & C. D. McIntire, 1991. Effects of hydraulic refuge and irradiance on grazer-periphyton interactions in laboratory streams. J. N. Am. Benthol. Soc. 10: 251–262.

    Google Scholar 

  • Dodd, J. J., 1987. The Illustrated Flora of Illinois: Diatoms. Southern Illinois University Press., Carbondale.

    Google Scholar 

  • Dodds, W. K. & J. L. Marra, 1989. Behaviors of the midge, Cricotopus (Diptera; Chironomidae) related to mutualism with Nostoc parmeloides (Cyanobacteria). Aquat. Insects 11: 201–208.

    Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.

    Google Scholar 

  • Dudley, T. L. & C. M. D'Antonio, 1991. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72: 297–309.

    Google Scholar 

  • Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J. N. Am. Benthol. Soc. 14: 465–509.

    Google Scholar 

  • Feminella, J. W. & V. H. Resh, 1991. Herbivorous caddisflies, macroalgae, and epilithic microalgae: dynamic interactions in a stream grazing system. Oecologia 87: 247–256.

    Article  Google Scholar 

  • Gawne, B., 1997. Inconsistency in the experimentally derived relationship between epilithon abundance and the micro-distribution of Agapetus monticolus (Trichoptera). Aust. J. Ecol. 22: 325–333.

    Google Scholar 

  • Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream hydrology: an introduction for ecologists. John Wiley & Sons, Chichester.

    Google Scholar 

  • Gregory, S. V., 1983. Plant-herbivore interactions in stream systems. Pages 157-189 In Barnes J. R. & G. W. Minshall (eds), Stream Ecology. Plenum Press, New York: 157–189.

    Google Scholar 

  • Hansen, R. A., D. D. Hart & R. A. Merz, 1991. Flow mediates predator-prey interactions between triclad flatworms and larval black flies. Oikos 60: 187–196.

    Google Scholar 

  • Hart, D. D., 1985. Causes and Consequences of Territoriality in a Grazing Stream Insect. Ecology 66: 404–414.

    Google Scholar 

  • Hart, D. D., 1992. Community organization in streams – the importance of species interactions, physical factors, and chance. Oecologia 91: 220–228.

    Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: The pervasive effects of flow on benthic organisms. Ann. Rev. Ecol. Syst. 30: 363–395.

    Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Google Scholar 

  • Kohler, S. L. & M. A. McPeek, 1989. Predation risk and the foraging behavior of stream insects. Ecology 70: 1811–1825.

    Google Scholar 

  • Lamberti, G. A., 1996. The role of periphyton in benthic food webs. In Stevenson, J. R., M. I. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego: 533–572

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendal/Hunt Publishing Co., Dubuque, Iowa.

    Google Scholar 

  • Mesick, C. F. & J. C. Tash, 1980. Effects of electricity on some benthic stream insects. Trans. Am. Fish. Soc. 109: 416–422.

    Google Scholar 

  • Minshall, G. W., 1978. Autotrophy in stream ecosystems. Bioscience 28: 767–771.

    Google Scholar 

  • Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29: 349–352.

    Google Scholar 

  • Palmer, T. M., 1995. The Influence of spatial heterogeneity on the behavior and growth of two herbivorous stream insects. Oecologia 104: 476–486.

    Google Scholar 

  • Passey, S. I., 2001. Spatial paradigms of lotic diatom distribution: a landscape ecology perspective. J. Phycol. 37: 370–378.

    Google Scholar 

  • Peckarsky, B. L., 1996. Alternative predator avoidance syndromes of stream-dwelling mayfly larvae. Ecology 77: 1888–1905.

    Google Scholar 

  • Poff, N. L., N. J. Voelz, J. V. Ward & R. E. Lee, 1990. Algal colonization under four experimentally-controlled current regimes in a high mountain stream. J. N. Am. Benthol. Soc. 9: 303–318.

    Google Scholar 

  • Poff, N. L. & J. V. Ward, 1991. Drift responses of benthic invertebrates to experimental streamflow variation in a hydrologically stable stream. Can. J. Fish. Aquat. Sci. 48: 1926–1936.

    Google Scholar 

  • Poff, N. L. & J. V. Ward, 1992. Heterogeneous currents and algal resources mediate in situ foraging activity of a mobile stream grazer. Oikos 65: 465–478.

    Google Scholar 

  • Poff, N. L., T. Wellnitz & J. Monroe, 2003. Redundancy among stream grazers across a current velocity gradient. Oecologia 134: 262–269.

    PubMed  Google Scholar 

  • Power, M. E., 1992. Hydrologic and trophic controls of seasonal algal blooms in northern California rivers. Archiv für Hydrobiol. 125: 385–410.

    Google Scholar 

  • Pringle, C. M. & G. A. Blake, 1994. Quantitative effects of atyid shrimp (Decopoda: Atyidae) on the depositional environment in a tropical stream: use of electricity for experimental exclusion. Can. J. Fish. Aquat. Sci. 51: 1443–1450.

    Google Scholar 

  • Rader, R. B. & J. V. Ward, 1987. Resource utilization, overlap and temporal dynamics in a guild of mountain stream insects. Freshwat. Biol. 18: 521–528.

    Google Scholar 

  • Reynolds, J. B., 1996. Electrofishing. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques. American Fisheries Society, Bethesda, MD: 221–253.

  • Rosemond, A. D. & S. H. Brawley, 1996. Species specific characteristics explain the persistence of Stigeoclonium tenue (Chlorophyta) in a woodland stream. J. Phycol. 32: 54–63.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. 3rd. edition. W. H. Freeman & Co., New York.

    Google Scholar 

  • Steinman, A. D., 1991. Effects of herbivore size and hunger level on periphyton communities. J. Phycol. 27: 54–59.

    Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, J. R., M. I. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego: 341–366.

    Google Scholar 

  • Steinman, A. D. & G. A. Lamberti, 1996. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds). Methods in Stream Ecology. Academic Press, San Diego: 295–313.

    Google Scholar 

  • Stevenson, R. J., 1996. The stimulation and drag of current. In Stevenson, J. R., M. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego:321–340.

    Google Scholar 

  • Stevenson, R. J., C. G. Peterson, D. B. Kirschtel, C. C. King & N. C. Tuchman, 1991. Density-dependent growth, ecological strategies, and the effects of nutrients and shading on benthic diatom succession in streams. J. Phycol. 27: 59–69.

    Google Scholar 

  • Swan, C. M. & M. A. Palmer, 2000. What drives small-scale spatial patterns in lotic meiofauna communities? Freshwat. Biol. 44: 109–121.

    Google Scholar 

  • Taylor, B.W., A. R. McIntosh & B. L. Peckarsky. 2002. Reach-scale manipulations show invertebrate grazers depress algal resources in streams. Limnol. Oceanogr 47: 893–899.

    Google Scholar 

  • Taylor, B.W., A. R. McIntosh & B. L. Peckarsky, 2001. Sampling stream invertebrates using electroshocking techniques: implications for basic and applied research. Can. J. Fish. Aquat. Sci. 58: 437–445.

    Google Scholar 

  • Tuchman, M. L. & R. J. Stevenson, 1980. Comparison of clay tile, sterilized rock, and natural substrate diatom communities in a small stream in southeastern Michigan, U.S.A. Hydrobiologia 75: 73–79.

    Google Scholar 

  • Walker, B., A. Kinzig & J. Langridge, 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.

    Google Scholar 

  • Wellnitz, T. & N. L. Poff, 2001. Functional redundancy in heterogeneous environments: implications for conservation. Ecol. Lett. 4: 177–179.

    Google Scholar 

  • Wellnitz, T. A., N. L. Poff, G. Cosyleon & B. Steury, 2001. Current velocity and spatial scale as determinants of the distribution and abundance of two rheophilic herbivorous insects. Landscape Ecol. 16: 111–120.

    Google Scholar 

  • Wellnitz, T. A. & J. V. Ward, 1998. Does light intensity modify the effect mayfly grazers have on periphyton? Freshwat. Biol. 39: 135–149.

    Google Scholar 

  • Wellnitz, T. A. & J. V. Ward, 2000. Herbivory and irradiance shape periphytic architecture in a Swiss alpine stream. Limnol. Oceanogr. 45: 64–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Wellnitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opsahl, R.W., Wellnitz, T. & LeRoy Poff, N. Current velocity and invertebrate grazing regulate stream algae: results of an in situ electrical exclusion. Hydrobiologia 499, 135–145 (2003). https://doi.org/10.1023/A:1026317230183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026317230183

Navigation