Skip to main content
Log in

Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal variation in denitrification and major factors controlling this process were determined in sediment, microbial communities attached to plant shoots (periphyton) and in the water of a Phragmites and an Elodea-dominated stand of a constructed wetland system between May 1997 and February 1998. The wetland was supplied with effluent from a sewage treatment plant. The denitrification rate in periphyton on plants shoots (expressed per shoot area) was always considerably higher than in the sediment and varied with the chlorophyll-a content of the periphyton in the course of the year. The algae in the periphyton provided attachment surfaces and probably also organic compounds to the denitrifying bacteria. Decreases in periphyton biomass and denitrification rate in the Phragmites and Elodea-dominated stands during the growing season were associated with enhanced shading by Phragmites shoots or a floating layer of macro-algae and Lemna spp., respectively. Light availability and the denitrification rate of periphyton increased again after the Phragmites shoots were cut in October. Nitrate appeared to limit the denitrification rate in the sediment. Periphyton denitrification rates were mostly lower on Elodea shoots than on Phragmites shoots, in spite of the higher living algal biomass on Elodea shoots. This difference was associated with lower nitrate concentrations in the Elodea-dominated stand. In the two stands, the daily denitrification rates in periphyton on shoots of Phragmites australis (44.4–121 mg N m−2 stand area d−1) and Elodea nuttallii (14.8–33.1 mg N m−2 d−1) were clearly more important than rates in the sediment (0.5–25.5 mg N m−2 d−1) or the water (0.4–3.9 mg N m−2 d−1). The presence of few bacteria attachment sites or low organic carbon availability possibly resulted in low denitrification rates in the water. Denitrification appeared to be a major process in nitrate removal from the through-flowing water in this wetland system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, T. K., M. H. Jensen & J. Sø rensen, 1984. Diurnal variation of nitrogen cycling in coastal, marine sediments. 1. Denitrification. Mar. Biol. 83: 171- 176.

    Google Scholar 

  • Brezonik, P. L. & G. F. Lee, 1968. Denitrification as a nitrogen sink in lake Mendota Wis. Envir. Sci. Technol. 2: 120- 125.

    Google Scholar 

  • Buresh, R. J. & W. H. Patrick Jr, 1981. Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol. Biochem. 13: 279- 283.

    Google Scholar 

  • Cavari, B. Z. & G. Phelps, 1977. Denitrification in Lake Kinneret in the presence of oxygen. Freshwat. Biol. 7: 385- 391.

    Google Scholar 

  • Chan, Y. K. & N. E. R. Campbell, 1980. Denitrification in Lake 227 during summer stratification. Can. J. Fish. aquat. Sci. 37: 506- 512.

    Google Scholar 

  • Christensen, P. B. & J. Sø rensen, 1986. Temporal variation of denitrification activity in plant-covered, littoral sediment from Lake Hampen, Denmark. Appl. envir. Microbiol. 51: 1174- 1179.

    Google Scholar 

  • Christensen, P. B., L. P. Nielsen, N. P. Revsbech & J. Sø rensen, 1989. Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl. envir. Microbiol. 55: 1234- 1241.

    Google Scholar 

  • Christensen, P. B., L. P. Nielsen, J. Sø rensen & N. P. Revsbech, 1990. Denitrification in nitrate-rich streams: diurnal and seasonal variation related to benthic oxygen metabolism. Limnol. Oceanogr. 35: 640- 651.

    Google Scholar 

  • Cooke, J. G., 1994. Nutrient transformations in a natural wetland receiving sewage effluent and the implications for waste treatment. Wat. Sci. Technol. 29: 209- 217.

    Google Scholar 

  • Dalsgaard, T. & N. P. Revsbech, 1992. Regulating factors of denitrification in trickling filter biofilms as measured with the oxygen/nitrous oxide microsensor. FEMS Microbiol. Ecol. 101: 151- 164.

    Google Scholar 

  • Davidsson, T. E. & L. G. Leonardson, 1996. Effects of nitrate and organic carbon additions on denitrification in two artificially flooded soils. Ecol. Engin. 7: 139- 149.

    Google Scholar 

  • De Klein, C. A. M. & R. S. P. Van Logtestijn, 1994. Denitrification in the top soil of managed grasslands in The Netherlands in relation to soil type and fertiliser level. Plant Soil 163: 33- 44.

    Google Scholar 

  • Duff, J. H., F. J. Triska & R. S. Oremland, 1984. Denitrification associated with stream periphyton: chamber estimates from undisrupted communities. J. envir. Qual. 13: 514- 518.

    Google Scholar 

  • Eriksson, P. G., 2001. Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry 55: 29- 44.

    Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1996. Functional differences in epiphytic microbial communities in nutrient-rich freshwater ecosystems: an assay of denitrifying capacity. Freshwat. Biol. 36: 555- 562.

    Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1997. Nitrogen removal in a wastewater reservoir: The importance of denitrification by epiphytic biofilms on submersed vegetation. J. envir. Qual. 26: 905- 910.

    Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1999. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnol. Oceanogr. 44: 1993- 1999.

    Google Scholar 

  • Faulkner, S. P. & C. J. Richardson, 1989. Physical and chemical characteristics of freshwater wetland soils. In: Hammer, D. A. (ed.), Constructed Wetlands for Wastewater Treatment: Municipal, Industrial, and Agricultural. Lewis publishers Inc., Chelsea, Michigan, U.S.A.: 41- 72.

    Google Scholar 

  • Faulkner, S. P., W. H. Patrick Jr & R. P. Gambrell, 1989. Field techniques for measuring wetland soil parameters. Soil Sci. Soc. am. J. 53: 883- 890.

    Google Scholar 

  • Gale, P. M., I. Dévai, K. R. Reddy & D. A. Graetz, 1993. Denitrification potential of soils from constructed and natural wetlands. Ecol. Engin. 2: 119- 130.

    Google Scholar 

  • Geesey, G. G., R. Mutch, J. W. Costerton & R. B. Green, 1978. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Oceanogr. 23: 1214- 1223.

    Google Scholar 

  • Groffman, P. M. & J. M. Tiedje, 1989. Denitrification in north temperate forest soils: spatial and temporal patterns at the landscape and seasonal scales. Soil Biol. Biochem. 21: 613- 620.

    Google Scholar 

  • Gumbricht, T., 1993. Nutrient removal processes in freshwater submersed macrophyte systems. Ecol. Engin. 2: 1- 30.

    Google Scholar 

  • Haack, T. K. & G. A. McFeters, 1982a. Microbial dynamics of an epilithic mat community in a high alpine stream. Appl. envir. Microbiol. 43: 702- 707.

    Google Scholar 

  • Haack, T. K. & G. A. McFeters, 1982b. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8: 115- 126.

    Google Scholar 

  • Hanson, G. C., P. M. Groffman & A. J. Gold, 1994. Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs. J. envir. Qual. 23: 917- 922.

    Google Scholar 

  • Holmes, R. M., J. B. Jones Jr, S. G. Fisher & N. B. Grimm, 1996. Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33: 125- 146.

    Google Scholar 

  • Houba, V. J. G., J. J. Van der Lee & I. Novozamsky (eds),1995. Soil Analysis Procedures, Other Procedures. Vol. 5B. Wageningen Agricultural University, Wageningen: 217 pp.

    Google Scholar 

  • Howard-Williams, C., 1985. Cycling and retention of nitrogen and phosphorus in wetlands: A theoretical and applied perspective. Freshwat. Biol. 15: 391- 431.

    Google Scholar 

  • Johnston, C. A., 1991. Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit. Rev. envir. Contr. 21: 491- 565.

    Google Scholar 

  • Jones, G., 1979. Microbial nitrate reduction in freshwater sediments. J. gen. Microbiol. 115: 27- 35.

    Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1989. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34: 718- 733.

    Google Scholar 

  • Kaspar, H. F. & J. M. Tiedje, 1981. Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. Can. J. Microbiol. 27: 878- 885.

    Google Scholar 

  • Knowles, R., 1982. Denitrification. Microbiol. Rev. 46: 43- 70.

    Google Scholar 

  • Kurata, A., 1983. Nutrient removal by epiphytic microorganisms of Phragmites communis. In Wetzel, R. G. (ed.), Periphyton of Freshwater Ecosystems. Dr W. Junk Publishers, The Hague: 305- 310.

  • Law, C. S., A. P. Rees & N. J. P. Owens, 1993. Nitrous oxide production by estuarine epiphyton. Limnol. Oceanogr. 38: 435- 441.

    Google Scholar 

  • McFeters, G. A., S. A. Stuart & S. B. Olson, 1978. Growth of heterotrophic bacteria and algal extracellular products in oligotrophic waters. Appl. envir. Microbiol. 35: 383- 391.

    Google Scholar 

  • Merrill, A. G. & D. R. Zak, 1992. Factors controlling denitrification rates in upland and swamp forests. Can. J. For. Res. 22: 1597- 1604.

    Google Scholar 

  • Moed, J. R. & G. M. Hallegraeff, 1978. Some problems in the estimation of chlorophyll-a and phaeopigments from pre-and post-acidification spectrophotometric measurements. Int. Rev. ges. Hydrobiol. 63: 787- 800.

    Google Scholar 

  • Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. J. Wat. Pollut. Contr. Fed. 55: 495- 505.

    Google Scholar 

  • Nielsen, L. P., P. B. Christensen, N. P. Revsbech & J. Sø rensen, 1990. Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core techniques. Limnol. Oceanogr. 35: 1135- 1144.

    Google Scholar 

  • Nijburg, J. W. & H. J. Laanbroek, 1997. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community. FEMS Microbiol. Ecol. 22: 57- 63.

    Google Scholar 

  • Nijburg, J.W.,M. J. L. Coolen, S. Gerards, P. J. A. Klein Gunnewiek & H. J. Laanbroek, 1997. Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community. Appl. envir. Microbiol. 63: 931- 937.

    Google Scholar 

  • Reddy, K. R. & W. H. Patrick, 1984. Nitrogen transformations and loss in flooded soils and sediments. Crit. Rev. envir. Contr. 13: 273- 309.

    Google Scholar 

  • Risgaard-Petersen, N., S. Rysgaard, L. P. Nielsen & N. P. Revsbech, 1994. Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnol. Oceanogr. 39: 573- 579.

    Google Scholar 

  • Rudolph, J., P. Frenzel & N. Pfennig, 1991. Acetylene inhibition technique underestimates in situ denitrification measurements in intact cores of freshwater sediment. FEMS Microbiol. Ecol. 85: 101- 106.

    Google Scholar 

  • Ryden, J. C., J. H. Skinner & D. J. Nixon, 1987. Soil core incubation system for the field measurement of denitrification using acetylene-inhibition. Soil Biol. Biochem. 19: 753- 757.

    Google Scholar 

  • Schreurs, W., 1978. An automated colorimetric method for the determination of dissolved organic carbon in sea water by U.V. destruction. Hydrobiol. Bull. 12: 137- 142.

    Google Scholar 

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33: 702- 724.

    Google Scholar 

  • Slater, J. M. & D. G. Capone, 1989. Nitrate requirement for acetylene inhibition of nitrous oxide reduction in marine sediments. Microb. Ecol. 17: 143- 157.

    Google Scholar 

  • Sø rensen, J. & N. P. Revsbech, 1990. 17. Denitrification in stream biofilm and sediment: in situ variation and control factors. In Revsbech, N. P. & J. Sørensen (eds), Denitrification in Soil and Sediment. Plenum Press, New York: 277- 290.

    Google Scholar 

  • Sø rensen, J., T. Jø rgensen & S. Brandt, 1988. Denitrification in stream epilithon: Seasonal variation in Gelbæ k and Rabis Bæ k, Denmark. FEMS Microbiol. Ecol. 53: 345- 354.

    Google Scholar 

  • Tiedje, J. M., 1982. Denitrification. In Methods of soil analysis, Part 2. Chemical and microbiological properties, 2nd edn. ASASSSA, Madison, U.S.A.: 1011- 1026.

    Google Scholar 

  • Tiedje, J. M., 1988. 4 Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, New York: 179- 244.

    Google Scholar 

  • Tiedje, J. M., S. Simkins & P. M. Groffman, 1989. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant Soil 115: 261- 284.

    Google Scholar 

  • Ventullo, R. M. & J. J. Rowe, 1982. Denitrification potential of epilithic communities in a lotic environment. Curr. Microbiol. 7: 29- 33.

    Google Scholar 

  • Verhoeven, J. T. A. & J. Van der Toorn, 1990. 24. Marsh eutrophication and wastewater treatment. In Patten, B.C. et al. (eds), Wetlands and Shallow Continental Water Bodies, Vol. 1. SPB Academic Publishing bv, The Hague: 571- 585.

  • Vymazal, J., H. Brix, P. F. Cooper, M. B. Green & R. Haberl, 1998. Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers, Leiden: 366 pp.

  • Weisner, S. E. B., P. G. Eriksson, W. Granéli & L. Leonardson, 1994. Influence of macrophytes on nitrate removal. AMBIO 23: 363–366.

    Google Scholar 

  • Wetzel, R. G. 1983a. Periphyton of freshwater ecosystems. Dr W. Junk Publishers, The Hague: 346 pp.

  • Wetzel, R. G., 1983b. Limnology, 2nd edn. Saunders College Publishing, Philadelphia: 767 pp.

    Google Scholar 

  • Xue, Y., D. A. Kovacic, M. B. David, L. E. Gentry, R. L. Mulvaney & C. W. Lindau, 1999. In situ measurements of denitrification in constructed wetlands. J. envir. Qual. 28: 263- 269.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs, New Jersey, USA: 718 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toet, S., Huibers, L.H.F.A., Van Logtestijn, R.S.P. et al. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501, 29–44 (2003). https://doi.org/10.1023/A:1026299017464

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026299017464

Navigation