Skip to main content
Log in

Multiscale Medial Loci and Their Properties

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Blum's medial axes have great strengths, in principle, in intuitively describing object shape in terms of a quasi-hierarchy of figures. But it is well known that, derived from a boundary, they are damagingly sensitive to detail in that boundary. The development of notions of spatial scale has led to some definitions of multiscale medial axes different from the Blum medial axis that considerably overcame the weakness. Three major multiscale medial axes have been proposed: iteratively pruned trees of Voronoi edges (Ogniewicz, 1993; Székely, 1996; Näf, 1996), shock loci of reaction-diffusion equations (Kimia et al., 1995; Siddiqi and Kimia, 1996), and height ridges of medialness (cores) (Fritsch et al., 1994; Morse et al., 1993; Pizer et al., 1998). These are different from the Blum medial axis, and each has different mathematical properties of generic branching and ending properties, singular transitions, and geometry of implied boundary, and they have different strengths and weaknesses for computing object descriptions from images or from object boundaries. These mathematical properties and computational abilities are laid out and compared and contrasted in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arcelli, C., Cordella, L.P., and Leviadi, S. 1981. From local maxima to connected skeletons. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(2):134–143.

    Google Scholar 

  • Arcelli, C. and Sanniti di Baja, G. 1986. Computing Voronoi diagrams in digital pictures, Pattern Rec. Letters, 4(5):383–389.

    Google Scholar 

  • Arcelli, C. and Sanniti di Baja, G. 1992. Ridge points in euclidean distance maps. Pattern Recognition Letters, 13(4):237–243.

    Google Scholar 

  • Asada, H. and Brady, M. 1986. The curvature primal sketch. IEEE PAMI, 8:2–14.

    Google Scholar 

  • Attali, D. 1995. Squelettes et graphes de Voronoi 2D et 3D, PhD Thesis, Université Joseph Fourier, Grenoble.

  • Attali, D., Bertolino, P., and Montanvert, A. 1994. Using polyballs to approximate shapes and skeletons. Proc. 12th Int. Conf. Pattern Recogn., vol. I, Conf. A:626–628.

    Google Scholar 

  • Attali, D. and Montanvert, A. 1994. Semicontinuous skeletons of 2d and 3d shapes. In Aspects of Visual Form Processing, C. Arcelli, L.P. Cordella, and G. Sanniti di Baja (Eds.), World Scientific, pp. 32–41.

  • Attneave, F. 1954. Some informational aspects of visual perception, Psychol. Rev., 61:183–193.

    Google Scholar 

  • August, J., Tannenbaum, A., and Zucker, S. 1999a. On the evolution of the skeleton. ICCV'99, Kerkyra, Greece, IEEE, 315–322.

    Google Scholar 

  • August, J., Siddiqi, K., and Zucker, S.W. 1999b. Ligature instabilities in the perceptual organization of shape. Computer Vision and Image Understanding, 76:231–243.

    Google Scholar 

  • August, J., Siddiqi, K., and Zucker, S.W. 1999c. Contour fragment grouping and shared, simple occluders. Computer Vision and Image Understanding, 76(2):146–162.

    Google Scholar 

  • Biederman, I. 1987. Recognition by components. Psychological Review, 94:115–147.

    Google Scholar 

  • Blum, H. 1967. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form, W. Wathen-Dunn (Ed.), MIT Press: Cambridge, MA, pp. 363–380.

    Google Scholar 

  • Blum, H. 1973. Biological shape and visual science. Journal Theor. Biol., 38:205–287.

    Google Scholar 

  • Blum, H. and Nagel, R.N. 1978. Shape description using weighted symmetric axis features. Pattern Recognition, 10:167–180.

    Google Scholar 

  • Bogaevski, I.A. 1990. Modifications of singularities of minimum functions and bifurcations of shockwaves of the Burger's equation with vanishing viscosity. Leningrad Math. J. 1:807–823.

    Google Scholar 

  • Bouix, S. and Siddiqi, K. 2000. Divergence-based medial surfaces. In ECCV'2000. IEEE: Dublin, Ireland, pp. 603–618.

    Google Scholar 

  • Brady, M. and Asada, H. 1984. Smoothed local symmetries and their implementation. International Journal of Robotics Research, 3(3):36–61.

    Google Scholar 

  • Brandt, J.W. 1992. Describing a solid with three-dimensional skeleton, in curves and surfaces in comp. Vision and Graphics III, SPIE, 1830:258–269.

    Google Scholar 

  • Brandt, J.W. and Algazi, V.R. 1992. Continuous skeleton computation byVoronoi diagram, Comp. Vis. Graphics Image Proc.: Image Understanding 55(3):329–338.

    Google Scholar 

  • Brockett, R. and Maragos, P. 1992. Evolution equations for continuous-scale morphology. Proc. IEEE Conference on Acoustics, Speech and Signal Processing.

  • Bruce, J.W., Giblin, P.J., and Gibson, C. 1985. Symmetry sets. Proc. Roy. Soc. Edinburgh 101A:163–186.

    Google Scholar 

  • Bruce, J.W. and Giblin, P.J. 1986. Growth, motion, and 1-parameter families of symmetry sets. Proc. Roy. Soc. Edinburgh 104A:179–204.

    Google Scholar 

  • Bruce, J.W., Giblin, P.J., and Tari, F. 1996. Ridges, crests and subparabolic lines of evolving surfaces. Int. J. Computer Vision. 18: 195–210.

    Google Scholar 

  • Burbeck, C. and Hadden, S. 1993. Scaled position integration areas: Accounting forWeber's law for separation. Journal of the Optical Society of America, 10(1):5–15.

    Google Scholar 

  • Burbeck, C.A. and Pizer, S.M. 1995. Object representation by cores: Identifying and representing primitive spatial regions. Vision Research, 35:1917–1930.

    Google Scholar 

  • Burbeck, C.A., Pizer, S.M., Morse, B.S., Ariely, D., Zauberman, G.S., and Rolland, J. 1996. Linking object boundaries at scale: A common mechanism for size and shape judgements. Vision Research, 36:361–372.

    Google Scholar 

  • Cignoni, P., Montani, C., and Scopigno, R. 1992. Amerge-first divide and conquer algorithm for ed Delaunay triangulation, Technical report, CNUCE.

  • Cross, A.D.J. and Hancock, E. 1997. Scale-space vector fields for feature analysis. CVPR: 738–743, IEEE.

  • Culver, T., Keyser, J., and Manocha, D. 1999. Accurate computation of the medial axis of a polyhedron. Proc. 5th Symp. Solid Modeling and Appl., 179–202.

  • Culver, T. 2000. Computing the medial axis of a polyhedron. PhD dissertation, Dept. of Comp. Sci., Univ. of NC. Also see website www.cs.unc.edu/∼culver/diss.

  • Damon, J. 1999. Properties of ridges and cores for two-dimensional images (2D height ridges and connectors). J. Math. Imag. and Vision, 10:163–174.

    Google Scholar 

  • Damon, J. 1998. Generic structure of two-dimensional images under Gaussian blurring. SIAM J. Appl. Math. 59:97–138.

    Google Scholar 

  • Damon, J. 1997. Singularities with scale threshold and discrete functions exhibiting generic properties. Matemática Contemporânea, 12:45–65.

    Google Scholar 

  • Dimitrov, P., Phillips, C., and Siddiqi, K. 2000. Robust and effi-cient skeletal graphs. CVPR'2000, 1:417–423, Hilton Head, SC, IEEE.

    Google Scholar 

  • Eberly, D. 1996. Ridges in Image and Data Analysis. Series on Computational Imaging andVision. Kluwer Academic Publishers: Dordrecht, The Netherlands.

    Google Scholar 

  • Edelsbrunner, H. 1987. Algorithms in Combinatorial Geometry. Monographs on Theoretical Computer Science. 10, Springer-Verlag.

  • Elder, J. and Zucker, S. 1993. The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vision Research, 33(7):981–991.

    Google Scholar 

  • Fang, T.P. and Piegl, L.A. 1993. Delaunay triangulation using a uniform grid, IEEE Computer Graphics and Applications, 13(3):36–47.

    Google Scholar 

  • Fridman, Y., Pizer, S.M., Aylward, S., and Bullitt, E. 2003. Segmenting 3D branching tubular structures using cores. Medical Image Computing and Computer Assisted Intervention (MICCAI), Lecture Notes in Computer Science, 2878.

  • Fritsch, D.S., Pizer, S.M., Morse, B., Eberly, D.H., and Liu, A. 1994. The multiscale medial axis and its applications in image registration. Pattern Recognition Letters, 15:445–452.

    Google Scholar 

  • Furst, J.D., Keller, R.S., Miller, J.E., and Pizer, S.M. 1997. Image loci are ridges in geometric Spaces. In Scale-Space Theory in Computer Vision: Proceedings of First International Conference, BM ter Haar Romeny (Ed.), Springer Lecture Notes in Computer Science 1252: Springer-Verlag: Berlin, pp. 176–187.

    Google Scholar 

  • Furst, J.D. and Pizer, S.M. 2001. Marching ridges. IASTED International Conference on Signal and Image Processing, 22–26.

  • Geiger, B. 1993. Three-dimensional modeling of human organs and its application to diagnostic and surgical planning, Technical Report RR-2105, INRIA.

  • Giblin, P. and Kimia, B. 1999. On the local form and transitions of symmetry sets, medial axes, and shocks. Proc. of the 7th International Conference on Computer Vision (ICCV' 99), pp. 385–391.

  • Giblin, P. and Kimia, B. 2000. A formal classification of 3D medial axis points and their local geometry. Proc. CVPR 2000, 11:566–573, IEEE.

    Google Scholar 

  • Giblin, P. and Kimia, B. 2002. Transitions of the 3D medial axis under a one-parameter family of deformations. Proc. ECCV 2002, 718–734, IEEE.

  • Gomez, J. and Faugeras, O. 2000. Level sets and distance functions. Proc. ECCV, 1:588–602.

    Google Scholar 

  • Held, M. 1998. Voronoi diagrams and offset curves of curvilinear polygons. Comput. Aided Design, 30(4):287–300.

    Google Scholar 

  • Katz, R.A. and Pizer, S.M. 2003. Untangling the Blum medial axis transform. Int. J. Comp. Vis., 55(2/3):155–179.

    Google Scholar 

  • Keller, R. 1999. Generic transitions of relative critical sets in parametrized families with applications to image analysis. PhD dissertation, Dept. of Math., Univ. of NC.

  • Kimmel, R., Shaked, D., and Kiryati, N. 1995. Skeletonization via distance maps and level sets. CVIU, 62(3):382–391.

    Google Scholar 

  • Kimia B, Tannenbaum, A., and Zucker, S.W. 1990. Toward a computational theory of shape: An overview, Proc. First European Conf. on Computer Vision, O. Faugeras (Ed.), Lecture Notes in Computer Science, vol. 427, Springer Verlag: New York.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A., and Zucker, S. 1995. Shape, shocks, and deformations {I}: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15:189–224.

    Google Scholar 

  • Klein, F. 1987. Euclidean skeletons. Proc. 5th Scandinavian Conf. Image Anal., 443–450.

  • Koenderink, J.J. 1990. Solid Shape. MIT Press: Cambridge, MA.

    Google Scholar 

  • Lax, P.D. 1971. Shockwaves and entropy. Contributions to Nonlinear Functional Analysis, 603–634, Academic Press.

  • Lee, D.T. 1982. Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4(4):363–369.

    Google Scholar 

  • Lee, T.S. 1996. Neurophysiological evidence for image segmentation and medial axis computation in primate V1. Computation and Neural Systems: Proceedings of the Fourth Annual Computational Neuroscience Conference.

  • Leymarie, F. and Levine, M.D. 1992. Simulating the grassfire transform using an active contour model. IEEE Trans. PAMI, 14(1):56–75.

    Google Scholar 

  • Leyton, M. 1987. Symmetry-curvature duality. Comp.Vision, Graphics, and Image Processing, 38:327–341.

    Google Scholar 

  • Liu, T.L. and Geiger, D. 1999. Approximate tree matching and shape similarity. Proc ICCV, 456–461.

  • Malandain, G., Bertrand G., and Ayache, N. (1993). Topological segmentation of discrete surfaces. International Journal of Computer Vision, 10(2):183–197.

    Google Scholar 

  • Marr, D. and Nishihara, K. 1978. Representation and recognition of the spatial organization of three dimensional structure. Proceedings of the Royal Society of London, B 200:269–294.

    Google Scholar 

  • Mather, J. 1983. Distance from a manifold in Euclidean space. Proc. Symp. Pure Math. 40(Pt 2):199–216.

    Google Scholar 

  • Matheron, G. 1988. Examples of Topological Properties of Skeletons. Image Analysis and Mathematical Morpholpogy, Part II: Theoretical Advances. 217–238, Academic Press.

  • Meyer, F. 1989. Skeletons and perceptual graphs. Signal Processing, 16:335–363.

    Google Scholar 

  • Miller, J. 1998. Relative critical sets in _n and applications to image analysis. PhD dissertation, Dept. of Math., Univ. of NC.

  • Miller, J. and Furst, J.D. 1999. The maximal scale ridge: Incorporating scale into the ridge definition. In Scale-Space Theories in Computer Vision: Proceedings of Second International Conference, M. Nielsen, P. Johansen, O. Fogh Olsen, and J. Weickert (Eds.), Springer Lecture Notes in Computer Science, vol. 1682, pp. 93–104.

  • Morse, B.S., Pizer, S.M., and Liu, A. 1993. Multiscale medial analysis of medical images. Information Processing in Medical Imaging (IPMI' 93), H.H. Barrett and A.F. Gmitro (Eds.), Lecture Notes in Computer Science, vol. 687, Springer-Verlag, pp. 112–131, In revised form in Image and Vision Computing, 12:327–338.

  • Morse, B.S., Pizer, S.M., Puff, D.T., and Gu, C. 1998. Zoom-invariant vision of figural shape: Effects on cores of image disturbances. Computer Vision and Image Understanding, 69:72–86.

    Google Scholar 

  • Nackman, L.R. 1981. Three-dimensional shape description using the symmetric axis transform. PhD dissertation, Dept. of Comp. Sci., Univ of NC.

  • Nackman, L.R. and Pizer, S.M. 1985. Three-dimensional shape description using the symmetric axis transform I: Theory. IEEE Trans. PAMI, 7(2):187–202.

    Google Scholar 

  • Näf, M. 1996. 3D Voronoi skeletons: A semicontinuous implementation of the ‘symmetric Axis Transform’ in 3D space, PhD dissertation ETH Zürich.

  • Ogniewicz, R.L. 1993. Discrete Voronoi Skeletons. Hartung-Gorre Verlag.

  • Ogniewicz, R.L. and Kübler, O. 1995. Hierarchic voronoi skeletons, Pattern Recognition, 28:343–359.

    Google Scholar 

  • Osher, S. and Sethian, J. 1988. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49.

    Google Scholar 

  • Pelillo, M., Siddiqi, K., and Zucker, S. 1998. Matching hierarchical structures using association graphs. Proceedings of the European Conference on Computer Vision.

  • Pizer, S.M., Oliver, W.R., and Bloomberg, S.H. 1987. Hierarchical shape description via the multiresolution symmetry axis transform. IEEE PAMI, 9(4):505–511.

    Google Scholar 

  • Pizer, S.M., Fritsch, D.S., Johnson, V., and Chaney, E.L. 1996. Segmentation, registration and measurement of shape variation via image object shape. IEEE TMI, 18(10):851–865.

    Google Scholar 

  • Pizer, S.M., Eberly, D., Morse, B.S., and Fritsch, D. S. 1998. Zoominvariant figural shape: The mathematics of cores. Computer Vision and Image Understanding (CVIU' 98), 69:55–71.

    Google Scholar 

  • Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., and Chaney, E.L. 2003. Deformable m-Reps for 3D medical image segmentation. Int. J. Comp. Vis., 55(2/3):85–106.

    Google Scholar 

  • Preparata, F.P. and Shamos, M.I. 1985. Computational Geometry, Springer-Verlag.

  • Pudney, C. 1998. Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images. Computer Vision and Image Understanding (CVIU' 98), 72(3):404–413.

    Google Scholar 

  • Rom, H. and Medioni, G. 1993. Hierarchical decomposition and axial shape description. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):973–981.

    Google Scholar 

  • Romeny, B. 1994. Geometry-Driven Diffusion in Computer Vision. Computational Imaging andVision, Kluwer Academic Publishers.

  • Schmitt, M. 1989. Some examples of algorithms analysis in computational geometry by means of mathematical morphological techniques. In Geometry and Robotics, J.D. Boissonnat and J.P. Laumons (Eds.), Lecture Notes in Computer Science, vol. 291, Springer-Verlag, pp. 225–246.

  • Sclaroff, S. 1997. Deformable prototypes for encoding shape categories in image databases. Pattern Recognition, 30(4):627–641.

    Google Scholar 

  • Sebastian, T.B., Klein, P.N., and Kimia, B.B. 2001. Recognition of shapes by editing shock graphs. Proc. 8th ICCV, IEEE.

  • Serra, J. 1982. Image Analysis and Mathematical Morpholpogy. Academic Press.

  • Sethian, J.A. 1996. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press.

  • Shah, J. 1996. A common framework for curve evolution, segmentation, and anisotropic diffusion. Proc. of CVPR: 136–142, IEEE.

  • Siddiqi, K. and Kimia, B.B. 1996. A shock grammar for recognition. CVPR'96: 507–513, San Francisco, CA, IEEE.

    Google Scholar 

  • Siddiqi, K., Shu, C.W., and Kimia, B.B. 1997. Geometric shockcapturing ENO schemes for subpixel interpolation, computation, and curve evolution. Graphical Models and Image Processing, 59:278–301.

    Google Scholar 

  • Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S. 1999. The Hamilton-Jacobi skeleton. In ICCV'99: 828–834, Kerkyra, Greece, IEEE.

    Google Scholar 

  • Siddiqi, K., Kimia, B., Tannenbaum, A., and Zucker, S.W. 2001. On the psychophysics of the shape triangle. Vision Research, 41(9):1153–1178.

    Google Scholar 

  • Siddiqi, K., Bouix, S., Tannenbaum, A.R., and Zucker, S.W. 2002. Hamilton-Jacobi Skeletons. Int. Journal of Computer Vision, 48(3):215–231.

    Google Scholar 

  • Styner, M. and Gerig, G. 2001. Medial models incorporating object variability for 3D shape analysis. Information Processing in Medical Imaging (IPMI 2001), M.F. Insana and R.M. Leahy (Eds.), Lecture Notes in Computer Science, Springer 2082:502–516.

  • Székely, G. 1996. Shape characterization by local symmetries, Habilitation, Swiss Federal Institute of Technology, Zurich.

  • Székely, G., Brechbühler, Ch., Kübler, O., Ogniewicz, R.L., and Budinger, T. 1992. Mapping the human cerebral cortex using 3d medial manifolds, Proc. 2nd Int. Conf. Visualization in Biomed. Comp, SPIE, 1808:130–144.

    Google Scholar 

  • Szükely, G., Näf, M., Brechbühler, Ch., and Kübler, O. 1994. Calculating 3d Voronoi diagrams of large unrestricted point sets for skeleton generation of complex 3d shapes. Proc. 2nd Int. Workshop on Visual Form, 532–541, World Scientific.

  • Tari, Z.S., Shah, J., and Pien, H. 1997. Extraction of shape skeletons from grayscale images. CVIU, 66(2):133–146.

    Google Scholar 

  • Tihonov, A.N. and Ya. Arsenin, V. 1977. Solution of Ill Posed Problems, Winston.

  • Weiss, I. 1986. Curve fitting with optimal mesh point placement, Technical Report CAR-TR-22, Comp. Vision Lab. University of Maryland.

  • Weiss, I. 1990. Shape reconstruction on a varying mesh. IEEE PAMI, 12(4):345–362.

    Google Scholar 

  • Whitman, R. and Hoffman, D.D. 1985. Codon constraints on closed 2D shapes. CVGIP, 31(2):265–281.

    Google Scholar 

  • Yomdin, J. 1981. On the local structure of the generic central set. Compositio. Math, 43:225–238.

    Google Scholar 

  • Yu, Z., Conrad, Ch., and Eckhardt, U. 1992. Regularization of the medial axis transform. In Theoretical Foundations of Computer Vision, R. Klette and W.G. Kropatsch (Eds.), pp. 13–24.

  • Zhu, S. and Yuille, A.L. 1996. FORMS:Aflexible object recognition and modelling system. International Journal of Computer Vision, 20(3):187–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizer, S.M., Siddiqi, K., Székely, G. et al. Multiscale Medial Loci and Their Properties. International Journal of Computer Vision 55, 155–179 (2003). https://doi.org/10.1023/A:1026135101267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026135101267

Navigation