Skip to main content
Log in

Reflection of the Intelligence Structure in the Spatiotemporal Features of the Baseline EEG

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The EEG correlates of the verbal, numerical, and figural IQ components according to the power and coherence characteristics of the baseline EEG in six frequency bands were studied taking into account personality traits of subjects (extroversion, neuroticism, psychoticism, and anxiety). Analysis of variance and correlation showed that a decreased power of the low-frequency θ1, 2and α1 rhythms and increased EEG power in the β2 band with the right-hemispheric dominance were characteristic of persons with higher intelligence. These EEG characteristics were associated with increased interhemispheric interaction according to the coherence indices and increased coherence within the right hemisphere. Each of the intelligence components (verbal, numerical, and figural) was characterized by a specific baseline frequency–spatial EEG pattern distinguished by specific interactions, predominantly, between the frontal and caudal cortical regions in the θ and/or β2 frequency bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Razoumnikova, O.M., Features of the Spatial Organiza-tion of the EEG in Persons with Different Personality Characteristics, Zh. Vyssh. Nervn. Deyat. im. I.P. Pav-lova, 2000, vol. 50, no. 6, p. 921.

    Google Scholar 

  2. Rusalov, V.M., Rusalova, M.N., Kalashnikova, I.G., et al., Bioelectric Activity of the Human Brain in Repre-sentatives of Different Temperamental Types, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1993, vol. 43, no. 3, p. 530.

  3. Sviderskaya, N.E. and Korol'kova, T.A., Influence of the Features of the Nervous System and Temperament on the EEG Spatial Organization, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 5, p. 849.

    Google Scholar 

  4. Anokhin, A.P., Lutzenberger, W., and Birbauter, N., Spatiotemporal Organization of Brain Dynamics and Intelli-gence: An EEG Study in Adolescents, Int. J. Psycho-physiol., 1999, vol. 33, no. 3, p. 23.

    Google Scholar 

  5. Haier, R.J., Sigel, B.V., Tang, C.H., et al., Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning. Special Issue: Biology and Intelligence, Intelligence, 1992, vol. 16, no. 3, p. 415.

    Google Scholar 

  6. Jausovec, N. and Jausovec, K., Correlations between ERP Parameters and Intelligence: A Reconsideration, Biol. Psychol., 2000, vol. 55, no. 2, p. 137.

    Google Scholar 

  7. Neubauer, V., Freudenthaler, H.H., and Pfurtscheller, G., Intelligence and Spatiotemporal Patterns of Event-Related Desynchronization, Intelligence, 1995, vol. 3, no. 2, p. 249.

  8. Kiroi, V.N., Voinov, V.B., and Vasil'eva, V.V., Electroen-cephalographic Correlates of Intelligence in Adoles-cents, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1995, vol. 45, no. 4, p. 669.

  9. Jausovec, N. and Jausovec, K., Differences in Event-related and Induced Brain Oscillations in the Theta and Alpha Frequency Bands Related to Human Intelligence, Neurosci. Lett., 2000, vol. 293, no. 3, p. 191.

    Google Scholar 

  10. Bekhtereva, N.P., Bundzen, P.V., and Gogolitsyn, Yu.L., Mozgovye kody psikhicheskoi deyatel'nosti (Brain Codes of Mental Activity), Leningrad: Nauka, 1977.

    Google Scholar 

  11. Ivanitskii, A.M., Brain Substrate of Subjective Mental Experience: A Hypothesis of Informational Synthesis, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 2, p. 241.

    Google Scholar 

  12. Deary, I.J. and Caryl, P.G., Neuroscience and Human Intelligence Differences, Trends Neurosci., 1997, vol. 20, no. 8, p. 365.

    Google Scholar 

  13. Pelosi, L., Holly, M., Slade, T., et al., Event-related Potential (ERP) Correlates of Performance of Intelli-gence Tests, Electroencephalogr. Clin. Neurophysiol., 1992, vol. 84, no. 6, p. 515.

    Google Scholar 

  14. Basar, E., Basar-Eroglu, N., Parnefijord, R., et al., Evoked Potentials: Ensembles of Brain Induced Rhyth-micities in the Alpha, Theta and Gamma Ranges, Induced Rhythms in the Brain, Basar, E. and Bullock, T.H., Eds., Boston: Birkhauser, 1992, p. 155.

    Google Scholar 

  15. Bosel, R., Mecklinger, A., and Stolpe, R., Changes in Spontaneous EEG Activity Indicate a Special Kind of Information Processing in Concept Learning, Biol. Psychol., 1990, vol. 31, no. 3, p. 257.

    Google Scholar 

  16. Sheppard, W.D. and Boyer, R.W., Pretrial EEG Coher-ence as a Predictor of Semantic Priming Effects, Brain Language, 1990, vol. 39, no. 1, p. 57.

    Google Scholar 

  17. Wszolek, Z.K., Herkes, G.K., Lagerlund, T.D., and Kokmen, E., Comparison of EEG Background Frequency Analysis, Psychological Test Scores, Short Test of Men-tal Status, and Quantitative SPECT in Dementia, J. Geri-atr. Psychiat. Neurol., 1992, vol. 5, no. 1, p. 22.

    Google Scholar 

  18. Hoptman, M.J. and Davidson, R.J., Baseline EEG Asymmetries and Performance on Neurophysiological Tasks, Neuropsychologia, 1998, vol. 36, no. 12, p. 1343.

    Google Scholar 

  19. Razoumnikova, O.M., Functional Organization of Dif-ferent Brain Areas during Convergent and Divergent Thinking: An EEG Investigation, Cogn. Brain. Res., 2000, vol. 10, no. 1-2, p. 11.

    Google Scholar 

  20. O'Boyle, M.W., Alexander, J.E., and Benbow, C.P., Enhanced Right Hemisphere Activation in the Mathe-matically Precocious: A Preliminary EEG Investigation, Brain Cognition, 1991, vol. 17, no. 2, p. 138.

    Google Scholar 

  21. Earle, J.B., Garcia-Dergay, P., Manniello, A., and Dowd, K., Mathematical Cognitive Style and Arithmetic Sign Comprehension: A Study of EEG Alpha and Theta Activity, Int. J. Psychophysiol., 1996, vol. 21, no. 1, p. 1.

    Google Scholar 

  22. Glass, A. and Riding, R.J., EEG Differences and Cogni-tive Style, Biol. Psychol., 1999, vol. 51, no. 1, p. 23.

    Google Scholar 

  23. Corsi-Cabrera, M., Arce, C., Ramos, J., and Guevara, M.A., Effect of Spatial Ability and Sex on Inter-and Intrahemispheric Correlation of EEG Activity, Electro-encephalogr. Clin. Neurophysiol., 1997, vol. 102, no. 1, p. 5.

    Google Scholar 

  24. Volf, N.V. and Razumnikova, O.M., Sex Differences in EEG Coherence during a Verbal Memory Task in Nor-mal Adults, Int. J. Psychophysiol., 1999, vol. 34, no. 2, p. 113.

    Google Scholar 

  25. Namazova, V.P. and Zhmyrikov, A.N., Psikhologo-peda-gogicheskie metody issledovaniya individual'no-lichnostnykh osobennostei (Psychological and Pedagogical Methods of Investigation of Individual Personality Characteristics), Moscow: Mosk. Gos. Univ., 1988.

    Google Scholar 

  26. Amthauer, R., Intelligence-Structure-Test, 4th ed., Göt-tingen: Hogrefe, 1970.

    Google Scholar 

  27. Eysenck, G., Pakula, A., and Goshtautas, A., Standardization of Eysenck Personality Questionnaire for Adult Population of Lithuania, Psikhol. Zh., 1991, no. 12, p. 83.

    Google Scholar 

  28. Spilberger, C.D., Gorsuch, R.L., and Lushene, R.E., Manual for the State-Trait Anxiety Inventory, Palo Alto, CA: Consulting Psychological, 1970.

    Google Scholar 

  29. Petsche, H., Approaches to Verbal, Visual and Musical Creativity by EEG Coherence Analysis, Int. J. Psycho-physiol., 1996, vol. 24, no. 1-2, p. 145.

    Google Scholar 

  30. Rappelsberger, P. and Petsche, H., Probability Mapping: Power and Coherence Analysis of Cognitive Processes, Brain Topogr., 1988, vol. 1, no. 1, p. 46.

  31. Klimesch, W., Pfurtscheller, G., Mohl, W., and Schimke, H., Event-related Desynchronization. ERD-Mapping and Hemispheric Differences for Words and Numbers, Int. J. Psychophysiol., 1990, vol. 8, no. 3, p. 297.

    Google Scholar 

  32. Simos, P.G., Breier, J.I., Zouridakis, G., and Papanicolaou, A.C., Identification of Language-specific Brain Activity Using Magnetoencephalography, J. Clin. Exp. Neuropsychol., 1998, vol. 20, no. 5, p. 706.

    Google Scholar 

  33. Smith, M.E., McEvoy, L.K., and Gevins, A., Neuropsy-chological Indices of Strategy Development and Skill Acquisition, Cogn. Brain Res., 1999, vol. 7, no. 3, p. 389.

    Google Scholar 

  34. Meyer-Lindenberg, A., Bauer, U., Kriger, S., et al., The Topography of Non-linear Cortical Dynamics at Rest, in Mental Calculation and Moving Shape Perception, Brain Topogr., 1998, vol. 10, no. 4, p. 291.

    Google Scholar 

  35. Inouyer, T., Shinosaki, K., Iyama, A., and Matsumoyo, Y., Localization of Activated Areas and Directional EEG Patterns during Mental Arithmetic, Electroencephalogr. Clin. Neurophysiol., 1993, vol. 86, no. 4, p. 224.

    Google Scholar 

  36. Sasaki, K., Tsujimoto, T., Nambu, A., et al., Dynamic Activities of the Frontal Association Cortex in Calculat-ing and Thinking, Neurosci. Res., 1994, vol. 19, no. 2, p. 229.

    Google Scholar 

  37. Dahaene, S., Tzourio, N., Frak, V., et al., Cerebral Activation during Number Multiplication and Comparison: A PET Study, Neurophysiology, 1996, vol. 34, no. 11, p. 1097.

    Google Scholar 

  38. Pulvermuller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B., High-frequency Brain Activity: Its Possible.626 Role in Attention, Perception and Language Processing, Progr. Neurobiol., 1997, vol. 52, no. 5, p. 427.

    Google Scholar 

  39. Inanaga, K., Frontal Midline Theta Rhythm and Mental Activity, Psychiat. Clin. Neurosci., 1998, vol. 52, no. 6, p. 555.

    Google Scholar 

  40. Klimesch, W., Memory Processes, Brain Oscillations and EEG Synchronization, Int. J. Psychophysiol., 1996, vol. 24, no. 1-2, p. 61.

    Google Scholar 

  41. Michel, C.M., Henggeler, B., Brandels, D., and Lehmann, D., Localization of Sources of Brain Alpha/Theta/Delta Activity and the Influence of the Mode of Spontaneous Mention, Physiol. Measurement, 1993, vol. 14, suppl. 4A, p. A21.

    Google Scholar 

  42. Shinomiya, S., Urakami, Y., Nagata, K., et al., Frontal Midline Theta Rhythm: Differentiating the Physiological Theta Rhythm from the Abnormal Discharge, Clin. Electroencephalogr., 1994, vol. 25, no. 1, p. 30.

    Google Scholar 

  43. von Stein, A. and Sarnthein, J., Different Frequencies for Different Scales of Cortical Integration: From Local Gamma to Long Range Alpha/Theta Synchronization, Int. J. Psychophysiol., 2000, vol. 38, no. 3, p. 301.

    Google Scholar 

  44. Krause, C.M., Viemero, V., Rosenqvist, A., et al., Relative Electroencephalographic Desynchronization and Synchronization in Humans to Emotional Film Content: An Analysis of the 4-6, 6-8, 8-10 and 10-12 Hz Fre-quency Bands, Neurosci. Lett., 2000, vol. 286, no. 1, p. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razoumnikova, O.M. Reflection of the Intelligence Structure in the Spatiotemporal Features of the Baseline EEG. Human Physiology 29, 619–626 (2003). https://doi.org/10.1023/A:1025876203177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025876203177

Keywords

Navigation