Skip to main content
Log in

Task Relevance Enhances Early Transient and Late Slow-Wave Activity of Distributed Cortical Sources

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The primary purpose of these studies was to link together concepts related to attention/working memory and feedforward/feedback activity using MEG response profiles obtained in humans. Similar to recent studies of attention in monkeys, we show early “spike-like” activity (<200 ms poststimulus), most likely reflecting an early transient excitatory response mixed with feedback influences, followed by “slow-wave” activity (>200 ms poststimulus) in MEG cortical response profiles evoked by a visual working memory task. We experimentally dissociated the early transient activity from the later sustained activity (predominately feedback) by conducting an auditory size classification task. Words, representing common objects, evoked activity in occipital cortex (presumably due to imagery) even though visual stimuli were not present in this task. The initial “spike” was absent from the response profile obtained from occipital cortex, leaving only “slow-wave” activity, thereby allowing us to characterize or profile feedback activity in this situation. Attention or task relevance enhanced the initial “spike” and “slow-wave” activity in visually responsive areas. Prefrontal activity, along the superior frontal sulcus, evoked by the working memory task, was active later in time than initial activity in visual cortex and later than the earliest effect of attention modulation in visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aine CJ, Huang M, Stephen J, Christner R (2000) Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources. NeuroImage. 12: 159-172.

    Article  PubMed  Google Scholar 

  • Aine CJ, Supek S, George JS (1995) Temporal dynamics of visualevoked neuromagnetic sources: Effects of stimulus parameters and selective attention. Intern J Neuroscience 80: 79-104.

    Google Scholar 

  • Baddeley A (1998) Recent developments in working memory. Current Opinion in Neurobiology 8: 234-238.

    Article  PubMed  Google Scholar 

  • Berg P, Scherg M (1994) Handbook of BESA: Brain electric source analysis. Version 2.0, MEGIS, Munich.

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York.

    Google Scholar 

  • Braeutigam S, Bailey AJ, Swithenby SJ (2001) Phase-locked gamma band responses to semantic violation stimuli. Brain Res. Cogn. Res. 10: 365-377.

    Article  Google Scholar 

  • Bressler SL (1995) Large scale cortical networks and cognition. Brain Res. Reviews 20: 288-304.

    Article  Google Scholar 

  • Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366: 153-156.

    Article  PubMed  Google Scholar 

  • Bressler SL, Kelso JA (2001) Cortical coordination dynamics and cognition. Trends in Cognitive Sciences 5: 26-36.

    Article  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12: 1-47.

    Article  Google Scholar 

  • Cauller LJ, Connors BW (1994) Synaptic physiology of horizontal afferents to layer I in slices of rat SI in neocortex. J Neurosci. 14: 751-762.

    PubMed  Google Scholar 

  • Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 390: 297-310.

    Article  PubMed  Google Scholar 

  • De Munck JC (1990) The estimation time varying on the basis of evoked potentials. Electroenceph. Clin. Neurophysiol. 77: 156-160.

    Article  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18: 193-222.

    Article  PubMed  Google Scholar 

  • Engel AK, König P, Kreiter AK, Singer W (1991) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252: 1177-1179.

    PubMed  Google Scholar 

  • Engel AK, König P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. TINS 15: 218-226.

    PubMed  Google Scholar 

  • Eulitz C, Maess B, Pantev C, Friederici AD, Feige B, Elbert T (1996) Oscillatory neuromagnetic activity induced by language and nonlanguage stimuli. Cogn. Brain Res. 4: 121-132.

    Article  Google Scholar 

  • Eulitz C, Eulitz H, Maess B, Cohen R, Pantev C, Elbert T (2000) Magnetic brain activity evoked and induced by visually presented words and nonverbal stimuli. Psychophysiology 37: 447-455.

    Article  PubMed  Google Scholar 

  • Fletcher PC, Frith CD, Rugg MD (1997) The functional neuroanatomy of episodic memory. TINS 20: 213-218.

    PubMed  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1988) Activation of the hippocampus and dentate gyrus by working memory: A 2-deoxyglucose study of behaving rhesus monkeys. J. Neurosci. 8: 4693-4706.

    PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayedresponse performance: Neuronal correlates of transient memory. J. Neurophysiol. 36: 61-78.

    PubMed  Google Scholar 

  • Fuster JM, Jervey JP (1981) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J. Neurosci. 2: 361-365.

    Google Scholar 

  • Gaetz M, Weinberg H, Rzempoluck, E Jantzen, KJ (1998) Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube. Cogn. Brain Res. 6: 335-346.

    Article  Google Scholar 

  • Girard P, Hupé JM, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85: 1328-1331.

    PubMed  Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Ann. Rev. Neurosci. 11: 137-156.

    Article  PubMed  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24: 31-47.

    Article  PubMed  Google Scholar 

  • Haenny PE, Schiller PH (1988) State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69: 225-244.

    PubMed  Google Scholar 

  • Hari R, Aittoniemi L, Järvinen ML, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain. Exp. Brain Res. 40: 237-240.

    Article  PubMed  Google Scholar 

  • Harrison RR, Aine CJ, Chen H-W, Flynn ER (1996) Comparison of minimization methods for spatio-temporal electromagnetic source localization using temporal constraints. NeuroImage 3: S64.

    Google Scholar 

  • Huang M, Aine CJ, Supek S, Best E, Ranken, D, Flynn ER (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroenceph. Clin. Neurophysiol. 108: 32-44.

    Article  PubMed  Google Scholar 

  • Hupé J-M, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J. Neurophysiol. 85: 134-145.

    PubMed  Google Scholar 

  • Ito M, Gilbert CD (1999) Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22: 593-604.

    Article  PubMed  Google Scholar 

  • Johnson RR, Burkhalter A (1997) A polysynaptic feedback circuit in rat visual cortex. J. Neurosci. 17: 7129-7140.

    PubMed  Google Scholar 

  • Kosslyn SM, Alpert NM, Thompson WL, Maljkovic V, Weise SB, Chabris CF, Hamilton SE, Rauch SL, Buonanno FS (1993) Visual mental imagery activates topographically organized visual cortex: PET investigations. J. Cogn. Neurosci. 5: 263-287.

    Google Scholar 

  • Kosslyn SM, Thompson WL, Alpert NM (1997) Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage 6: 320-334.

    Article  PubMed  Google Scholar 

  • Lamme VAF, Zipser K, Spekreijse H (1998) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc. Natl. Acad. Sci. USA 95: 3263-3268.

    Article  PubMed  Google Scholar 

  • Lezak MD (1995) Neuropsychological assessment, 3rd edition New York: Oxford University Press.

    Google Scholar 

  • Liang H, Ding M, Nakamura R, Bressler SL (2000) Causal influences in primate cerebral cortex during visual pattern discrimination. NeuroReport 11: 2875-2880.

    PubMed  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77: 24-42.

    PubMed  Google Scholar 

  • Maunsell JHR (1995) The brain’s visual world: Representation of visual targets in cerebral cortex. Science 270: 764-768.

    PubMed  Google Scholar 

  • McAdams CJ, Maunsell JHR (1999) Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23: 765-773.

    Article  PubMed  Google Scholar 

  • Mehta AD, Ulbert I, Schroeder CE (2000a) Intermodal selective attention in monkeys. I. Distribution and timing of effects across visual areas. Cereb. Cortex 10: 343-358.

    Article  PubMed  Google Scholar 

  • Mehta AD, Ulbert I, Schroeder CE (2000b) Intermodal selective attention in monkeys. II. Physiological mechanisms of modulation. Cereb. Cortex 10: 359-370.

    Article  PubMed  Google Scholar 

  • Mellet E, Tzourio-Mazoyer N, Bricogne S, Mazoyer B, Kosslyn SM, Denis M (2000) Functional anatomy of high-resolution visual mental imagery. J. Cogn. Neurosci. 12: 98-109.

    Article  PubMed  Google Scholar 

  • Mesulam M-M (1998) From sensation to cognition. Brain 121: 1013-1052.

    Article  PubMed  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M (1997). Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia. 35: 999-1015.

    Article  PubMed  Google Scholar 

  • Mignard M, Malpeli JG (1991) Paths of information flow through visual cortex. Science 251: 1249-1251.

    PubMed  Google Scholar 

  • Miller EK, Li L, Desimone R (1991) A neural mechanism for working and recognition memory in inferior temporal cortex. Science 1377-1379.

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229: 782-784.

    PubMed  Google Scholar 

  • Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39: 541-557.

    Article  PubMed  Google Scholar 

  • Motter BC (1993) Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70: 909-919.

    PubMed  Google Scholar 

  • Motter BC (1994) Neural correlates of feature selective memory and Pop-out in extrastriate Area V4. J. Neurosci. 14: 2190-2199.

    PubMed  Google Scholar 

  • Murphy PC, Duckett SG, Sillito AM (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286: 1552-1554.

    Article  PubMed  Google Scholar 

  • Murray EA, Mishkin M (1998) Object recognition and locationmemory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18: 6568-6582.

    PubMed  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput. J. 7: 308-313.

    Google Scholar 

  • Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: Origin and frequency dependence. Electroenceph. Clin. Neurophysiol. 90: 82-90.

    Article  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: The art of scientific computing. University Press, Cambridge.

    Google Scholar 

  • Raij T (1999) Patterns of brain activity during visual imagery of letters. J. Cogn. Neurosci. 11: 282-299.

    Article  PubMed  Google Scholar 

  • Reynolds JH, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24: 19-29.

    Article  PubMed  Google Scholar 

  • Richmond BJ, Wurtz RH, Sato T (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. J. Neurophysiol. 50: 1415-1432.

    PubMed  Google Scholar 

  • Richmond BJ, Optican LM (1987) Temporal encoding of twodimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. J. Neurophysiol. 57: 147-161.

    PubMed  Google Scholar 

  • Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J. Neurophysiol. 64: 351-369.

    PubMed  Google Scholar 

  • Rockland KS, Drash GW (1996) Collateralized divergent feedback connections that target multiple cortical areas. J. Comp. Neurol. 373: 529-548.

    PubMed  Google Scholar 

  • Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385: 157-161.

    Article  PubMed  Google Scholar 

  • Roelfsema PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the Macaque monkey. Nature 395: 376-381.

    Article  PubMed  Google Scholar 

  • Roelfsema PR, Lamme VAF, Spekreijse H, Bosch H (2002) Figureground segregation in a recurrent network architecture. J. Cogn. Neurosci. 14: 525-537.

    Article  PubMed  Google Scholar 

  • Salin P-A, Bullier J (1995) Corticocortical connections in the visual system: Structure and function. Physiological Reviews 75: 107-154.

    PubMed  Google Scholar 

  • Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophysiol. 48: 38-48.

    PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32: 11-22.

    Article  PubMed  Google Scholar 

  • Schroeder CE (1995) Defining the neural bases of visual selective attention: Conceptual and empirical issues. Int. J. Neurosci. 80: 65-78.

    PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Foxe JJ (2001) Determinants and mechanisms of attentional modulation of neural processing. Frontiers In Biosciences 6: D672-D684.

    Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal pro-file of visual system activation revealed by current source density analysis in the awake macaque. Cereb. Cortex 8: 575-592.

    Article  PubMed  Google Scholar 

  • Seidemann E, Newsome WT (1999) Effect of spatial attention on the responses of area MT neurons. J. Neurophysiol. 81: 1783-1794.

    PubMed  Google Scholar 

  • Shao Z, Burkhalter A (1996) Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex. J. Neurosci. 16: 7353-7365.

    PubMed  Google Scholar 

  • Singer W (1995) Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18: 555-586.

    Article  PubMed  Google Scholar 

  • Singer W (1999) Neuronal synchrony: A versatile code for the defi-nition of relations? Neuron 24: 49-65.

    Article  PubMed  Google Scholar 

  • Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagnetic source localization: Model order and limits of source resolution. IEEE BME 40: 529-540.

    Google Scholar 

  • Supek S, Aine CJ (1997) Spatiotemporal modeling of neuromagnetic data: I. Multi-source location versus time-course estimation accuracy. Human Brain Mapping 5: 139-153.

    Article  Google Scholar 

  • Treue S, Martinez-Trujillo JC (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399: 575-579.

    Article  PubMed  Google Scholar 

  • Ungerleider LG (1995) Functional brain imaging studies of cortical mechanisms for memory. Science 270: 769-775.

    PubMed  Google Scholar 

  • Vidyasagar TR (1998) Gating of neuronal responses in macaque primary visual cortex by an attentional spotlight. NeuroReport 9: 1947-1952.

    PubMed  Google Scholar 

  • Wilson FAW, Óscalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260: 1955-1958.

    PubMed  Google Scholar 

  • Wurtz RH, Mohler CW (1976) Enhancement of visual responses in monkey striate cortex and frontal eye fields. J. Neurophysiol. 39: 766-772.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aine, C., Stephen, J., Christner, R. et al. Task Relevance Enhances Early Transient and Late Slow-Wave Activity of Distributed Cortical Sources. J Comput Neurosci 15, 203–221 (2003). https://doi.org/10.1023/A:1025864825200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025864825200

Navigation