Skip to main content
Log in

Amino Acid Ester Prodrugs of Floxuridine: Synthesis and Effects of Structure, Stereochemistry, and Site of Esterification on the Rate of Hydrolysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To synthesize amino acid ester prodrugs of floxuridine (FUdR) and to investigate the effects of structure, stereochemistry, and site of esterification of promoiety on the rates of hydrolysis of these prodrugs in Caco-2 cell homogenates.

Methods. Amino acid ester prodrugs of FUdR were synthesized using established procedures. The kinetics of hydrolysis of prodrugs was evaluated in human adenocarcinoma cell line (Caco-2) homogenates and pH 7.4 phosphate buffer.

Results. 3′-Monoester, 5′-monoester, and 3′,5′-diester prodrugs of FUdR utilizing proline, L-valine, D-valine, L-phenylalanine, and D-phenylalanine as promoieties were synthesized and characterized. In Caco-2 cell homogenates, the L-amino acid ester prodrugs hydrolyzed 10 to 75 times faster than the corresponding D-amino acid ester prodrugs. Pro and Phe ester prodrugs hydrolyzed much faster (3- to 30-fold) than the corresponding Val ester prodrugs. Further, the 5′-monoester prodrugs hydrolyzed significantly faster (3-fold) than the 3′,5′-diester prodrugs.

Conclusions. Novel amino acid ester prodrugs of FUdR were successfully synthesized. The results presented here clearly demonstrate that the rate of FUdR prodrug activation in Caco-2 cell homogenates is affected by the structure, stereochemistry, and site of esterification of the promoiety. Finally, the 5′-Val and 5′-Phe monoesters exhibited desirable characteristics such as good solution stability and relatively fast enzymatic conversion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Kemeny, Y. Huang, A. M. Cohen, W. Shi, J. A. Conti, M. F. Brennan, J. R. Bertino, A. D. Turnbull, D. Sullivan, J. Stockman, L. H. Blumgart, and Y. Fong. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N. Engl. J. Med. 341:2039–2048 (1999).

    Google Scholar 

  2. J. L. Grem. 5–Fluorouracil: Forty–plus and still ticking. A review of its preclinical and clinical development. Invest. New Drugs 18:299–313 (2000).

    Google Scholar 

  3. B. A. Chabner, D. P. Ryan, L. Paz–Area, R. Garcia–Carbonero, and P. Calabresi. Antineoplastic agents. In G. Hardman and L. E. Limbird (eds.), Goodman & Gilman's The Pharmacological Basis of Therapeutics, 10th ed., Mc–Graw Hill, New York, 2001, pp. 1389–1459.

    Google Scholar 

  4. J. A. Van Laar, Y. M. Rustum, S. P. Ackland, C. J. Van Groeningen, and G. J. Peters. Comparison of 5–fluoro–2′–deoxyuridine with 5–fluorouracil and their role in the treatment of colorectal cancer. Eur. J. Cancer 34:296–306 (1998).

    Google Scholar 

  5. H. K. Han and G. L. Amidon. Targeted prodrug design to optimize drug delivery. AAPS Pharmsci. 2:E6(2000).

    Google Scholar 

  6. W. A. Denny. Prodrug strategies in cancer therapy. Eur. J. Med. Chem. 36:577–595 (2001).

    Google Scholar 

  7. R. A. Schwendener, A. Supersaxo, W. Rubas, H. G. Weder, H. R. Hartmann, H. Schott, A. Ziegler, and H. Hengartner. 5′–O–Palmitoyl–and 3′,5′–O–dipalmitoyl–5–fluoro–2′–deoxyuridine—novel lipophilic analogues of 5′–fluoro–2′–deoxyuridine: Synthesis, incorporation into liposomes and preliminary biological results. Biochem. Biophys. Res. Commun. 126:660–666 (1985).

    Google Scholar 

  8. S. Fukushima, T. Kawaguchi, M. Nishida, K. Juni, Y. Yamashita, M. Takahashi, and M. Nakano. Selective anticancer effects of 3′,5′–dioctanoyl–5–fluoro–2′–deoxyuridine, a lipophilic prodrug of 5–fluoro–2′–deoxyuridine, dissolved in an oily lymphographic agent on hepatic cancer of rabbits bearing vx–2 tumor. Cancer Res. 47:1930–1934 (1987).

    Google Scholar 

  9. T. Kawaguchi, S. Fukushima, Y. Hayashi, and M. Nakano. Nonenzymatic enzymatic hydrolysis of 5–fluoro–2′–deoxyuridine (FUdR) esters. Pharm. Res. 5:741–744 (1988).

    Google Scholar 

  10. T. Halmos, P. Moroni, K. Antonakis, and J. Uriel. Fatty acid conjugates of 2′–deoxy–5–fluorouridine as prodrugs for the selective delivery of 5–fluorouracil to tumor cells. Biochem. Pharmacol. 44:149–155 (1992).

    Google Scholar 

  11. S. C. Tobias and R. F. Borch. Synthesis and biological studies of novel nucleoside phosphoramidate prodrugs. J. Med. Chem. 44:4475–4480 (2001).

    Google Scholar 

  12. Y. Wei, Y. Yan, D. Pei, and B. Gong. A photoactivated prodrug. Bioorg. Med. Chem. Lett. 8:2419–2422 (1998).

    Google Scholar 

  13. Z. Xia, L. I. Wiebe, G. G. Miller, E. E. Knaus. Synthesis and biological evaluation of butanoate, retinoate, bis(2,2,2–trichloroethyl)phosphate derivatives of 5–fluoro–2′–deoxyuridine 2′,5–difluoro–2′–deoxyuridine as potential dual action anti–cancer prodrugs. Arch. Pharm. (Weinheim) 332:286–294 (1999).

    Google Scholar 

  14. H. K. Han, D. M. Oh, and G. L. Amidon. Cellular uptake mechanism of amino acid ester prodrugs in caco–2/hpept1 cells overexpressing a human peptide transporter. Pharm. Res. 15:1382–1386 (1998).

    Google Scholar 

  15. I. Rubio–Aliaga and H. Daniel. Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol. Sci. 23:434–440 (2002).

    Google Scholar 

  16. D. M. Oh, H. Han, and G. L. Amidon. Drug transport and targeting. Intestinal transport. Pharm. Biotechnol. 12:59–88 (1999).

    Google Scholar 

  17. M. Sugawara, W. Huang, Y. L. Fei, F. H. Leibach, V. Ganapathy, and M. E. Ganapathy. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters pept1 and pept2. J. Pharm. Sci. 89:781–789 (2000).

    Google Scholar 

  18. T. Nakanishi, I. Tamai, A. Takaki, A. Tsuji. Cancer cell–targeted drug delivery utilizing oligopeptide transport activity. Int. J. Cancer 88:274–280 (2000).

    Google Scholar 

  19. D. E. Gonzalez, K. M. Covitz, W. Sadee, and R. J. Mrsny. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines aspc–1 and capan–2. Cancer Res. 58:519–525 (1998).

    Google Scholar 

  20. R. J. Mrsny. Oligopeptide transporters as putative therapeutic targets for cancer cells. Pharm. Res. 15:816–818 (1998).

    Google Scholar 

  21. V. H. Lee. Mucosal drug delivery. J. Natl. Cancer Inst. Monogr. 41:4(2001).

    Google Scholar 

  22. F. M. Williams. Clinical significance of esterases in man. Clinical Pharmacokin. 10:392–403 (1985).

    Google Scholar 

  23. P. K. Banerjee and G. L. Amidon. Design of prodrugs based on enzyme–substrate specificity. In H. Bundgaard (ed.), Design of Prodrugs, Elsevier, Sciences Publisher, New York, 1985, pp. 93–133.

    Google Scholar 

  24. T. Satoh, P. Taylor, W. F. Bosron, S. P. Sanghani, M. Hosokawa, and B. N. La Du. Current progress on esterases: From molecular structure to function. Drug Metab. Dispos. 30:488–493 (2002).

    Google Scholar 

  25. S. A. Varia, S. Schuller, and V. J. Stella. Phenytoin prodrugs iv: Hydrolysis of various 3–(hydroxymethyl)phenytoin esters. J. Pharm. Sci. 73:1074–1080 (1984).

    Google Scholar 

  26. T. C. Bruice and S. Benkovic. Bioorganic mechanisms, W. A. Benjamin, Inc., New York (1966).

    Google Scholar 

  27. R. Wolfenden. The mechanism of hydrolysis of amino acyl RNA. Biochemistry 2:1090–1092 (1963).

    Google Scholar 

  28. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (caco–2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    Google Scholar 

  29. K. Tamura, C. P. Lee, P. L. Smith, and R. T. Borchardt. Metabolism, uptake, transepithelial transport of the stereoisomers of val–val–val in the human intestinal cell line, caco–2. Pharm. Res. 13:1663–1667 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vig, B.S., Lorenzi, P.J., Mittal, S. et al. Amino Acid Ester Prodrugs of Floxuridine: Synthesis and Effects of Structure, Stereochemistry, and Site of Esterification on the Rate of Hydrolysis. Pharm Res 20, 1381–1388 (2003). https://doi.org/10.1023/A:1025745824632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025745824632

Navigation