Skip to main content
Log in

Effects of L-2-Hydroxyglutaric Acid on Various Parameters of the Glutamatergic System in Cerebral Cortex of Rats

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

L-2-Hydroxyglutaric acid (LGA) accumulates and is the biochemical hallmark of the neurometabolic disorder L-2-hydroxyglutaric aciduria (LHGA). Although this disease is predominantly characterized by severe neurological findings and pronounced cerebral atrophy, the pathomechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA (0.1–1 mM) on various parameters of the glutamatergic system, namely the basal and potassium-induced release of L-[3H]glutamate by synaptosomal preparations, Na+-dependent L-[3H]glutamate uptake by synaptosomal preparations and Na+-independent L-[3H]glutamate uptake by synaptic vesicles, as well as of L-[3H]glutamate binding to synaptic plasma membranes from cerebral cortex of male adult Wistar rats. We observed that LGA significantly increased L-[3H]glutamate uptake into synaptosomes and synaptic vesicles, without altering synaptosomal glutamate release and glutamate binding to synaptic plasma membranes. Although more comprehensive studies are necessary to evaluate the exact role of LGA on neurotransmission, our findings do not support a direct excitotoxic action for LGA. Therefore, other abnormalities should be searched for to explain neurodegeneration of LHGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbot, C., Fineza, I., Diogo, L., Maia, M., Melo, J., Guimarães, A., Pires, M.M., Cardoso, M.L., and Vilarinho, L. (1997). L-2-Hydroxyglutaric aciduria: Clinical, biochemical and magnetic resonance imaging in six portuguese pediatric patients. Brain Dev. 19:268-273.

    Google Scholar 

  • Barth, P.G., Hoffman, G.F., Jaeken, J.J., Lehnert, W., Hanefeld, F., van Gennip, A.H., Duran, M., Valk, J., Schutgens, R.B., Trefz, F.K., Reimann, G., and Hartung, H.P. (1992). L-2-Hydroxyglutaric acidaemia: A novel inherited neurometabolic disorder. Ann. Neurol. 32:66-71.

    Google Scholar 

  • Barth, P.G., Hoffmann, G.F., Jaeken, J.J., Wanders, R.J., Duran, M., Jansen, G.A., Jakobs, C., Lehnert, W., Hanefeld, F., Valk, J., Schutgens, R.B.H., Trefz, F.K., Hartung, H.-P., Chamoles, N.A., Sfaello, Z., and Caruso, U., (1993). L-2-Hydroxyglutaric acidemia: Clinical and biochemical findings in 12 patients and preliminary report on L-2-hydroxyacid dehydrogenase. J. Inherit. Metab. Dis. 16:753-761.

    Google Scholar 

  • Beal, M.F. (1992). Does impairment of energy metabolism, result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119-130.

    Google Scholar 

  • Chen, E., Nyhan, W.L., Jakobs, C., Greco, C.M., Barkovich, A.J., Cox, V.A., and Packman, S. (1996). L-2-Hydroxyglutaric aciduria: Neuropathological correlations and first report of severe neurodegenerative disease and neonatal death. J. Inherit. Metab. Dis. 19:335-343.

    Google Scholar 

  • de Mello, C.F., Kölker, S., Ahlemeyer, B., de Souza, F.R., Fighera, M.R., Mayatepek, E., Krieglstein, J., Hoffmann, G.F., and Wajner, M. (2001). Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and striatal lesions in rats. Brain Res. 916:70-75.

    Google Scholar 

  • Divry, P., Jakobs, C., Vianey-Saban, C., Gibson, K.M., Michelakakis, H., Papadimitriou, A., Divari, R., Chabrol, B., Cournelle, M.A., and Livet, M.O. (1993). L-2-hydroxyglutaric aciduria: two further cases. J. Inherit. Metab. Dis. 16:505-507.

    Google Scholar 

  • Dunkley, P.R., Heath, J., Harrison, S.M., Jarvie, P.E., Glenfield, P.J., and Rostas, J.A.P. (1986). A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: Homogeneity and morphology of subcellular fractions. Brain Res. 441:59-71.

    Google Scholar 

  • Duran, M., Kamerling, J.P., Barkker, H.D., van Gennip, H.A., and Wadman, S.K. (1980). L-2-hydroxyglutaric aciduria: An inborn error of metabolism? J. Inherit Metab. Dis. 3:11-15.

    Google Scholar 

  • Emanuelli, T., Antunes, V., and Souza, D.O.G. (1998). Characterization of L-[3H]glutamate binding to fresh and frozen crude plasma membranes isolated from cerebral cortex of adult rats. Biochem. Mol. Biol. Int. 44:1265-1272.

    Google Scholar 

  • Erickson-Viitanen, S., Viitanen, P., Geiger, P.J., Yang, W.C., and Bessman, S.P. (1982). Compartmentation of mitochondrial creatine phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors. J. Biol. Chem. 257:14395-14404.

    Google Scholar 

  • Flott-Rahmel, B., Falter, C., Schluff, P., Fingerhut, R., Christensen, E., Jakobs, C., Musshoff, U., Fautek, J.D., Ludolph, A., and Ullrich, K. (1997). Nerve cell lesions caused by 3-hydroxyglutaric acid: A possible mechanism for neurodegeneration in glutaric acidaemia I. J. Inherit. Metab. Dis. 20:387-390.

    Google Scholar 

  • Fujitake, J., Ishikawa, Y., Fujii, H., Nishimura, K., Hayakawa, K., Inoue, F., Terada, N., Okochi, M., and Tatsuoka, Y. (1999). L-2-Hydroxyglutaric aciduria: Two Japanese adult cases in one family. J. Neurol. 246:378-382.

    Google Scholar 

  • Fykse, E.M., and Fonnum, F.J. (1996). Amino acid neurotransmission: Dynamics of vesicular uptake. Neurochem. Res. 21:1053-1060.

    Google Scholar 

  • Hoffmann, G.F., Jakobs, C., Holmes, B., Mitchell, L., Becker, G., Hartung, H.P., and Nyhan, W.L. (1995). Organic acids in cerebrospinal fluid and plasma of patients with L-2-hydroxyglutaric aciduria. J. Inherit. Metab. Dis. 18:189-193.

    Google Scholar 

  • Kölker, S., Ahlemeyer, B., Krieglstein, J., and Hoffmann, G.F. (1999). 3-Hydroxyglutaric and glutaric acids are neurotoxic through NMDA receptors in vitro. J. Inherit. Metab. Dis. 22:259-262.

    Google Scholar 

  • Kölker, S., Ahlemeyer, B., Krieglstein, J., and Hoffmann, G.F. (2000a). Cerebral organic acid disorders induce neuronal damage via excitotoxic organic acids in vitro. Amino Acids 18:31-40.

    Google Scholar 

  • Kölker, S., Ahlemeyer, B., Krieglstein, J., Hoffmann, G.F., (2000b). Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro: A new pathophysiologic approach to glutaryl-CoA dehydrogenase deficiency. Pediatr. Res. 47:495-503.

    Google Scholar 

  • Kölker, S., Köhr, G., Ahlemeyer, B., Okun, J.G., Pawlak, V., Horster, F., Mayatepek, E., Krieglstein, J., and Hoffmann, G.F. (2002a). Ca2+ and Na+ dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr. Res. 52(2):199-206.

    Google Scholar 

  • Kölker, S., Okun, J.G., Ahlemeyer, B., Wyse, A. T., Horster, F., Wajner, M., Kohlmuller, D., Mayatepek, E., Krieglstein, J., and Hoffmann, G.F. (2002b). Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J. Neurosci. Res. 685:424-431.

    Google Scholar 

  • Latini, A., Scussiato, K., Rosa, R.B., Leipnitz, G., Llesuy, S., Belló-Klein, A., Dutra-Filho, C.S., and Wajner, M. (in press) Induction of oxidative stress by L-2-hydroxyglutaric acid in rat brain. J. Neurosci. Res.

  • Lima, T.T.F, Begnini, J., Bastiani, J, Fíalo, D.B., Jurach, A., Ribeiro, M.C., Wajner, M., and de Mello, C.F. (1998). Pharmacological evidence for GABAergic and glutaminergic involvement in the convulsant and behavioral effects of glutaric acid. Brain Res. 802:55-60.

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  • Ludolph, A.C., Riepe, M., and Ullrich, K. (1993). Excitotoxicity, energy metabolism and neurodegeneration. J. Inherit. Metab. Dis. 16:716-723.

    Google Scholar 

  • Meldrum, B., and Garthwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci. 11:379-387.

    Google Scholar 

  • Migues, P.V., Leal, R.B., Mantovani, M., Nicolau, M., Gabilan, N.H. (1999). Synaptosomal glutamate release induced by the fraction BC2 from the venom of the sea anemone Bunadosoma caissarum. NeuroReport 10:67-70.

    Google Scholar 

  • Nagi, A.K., Shuster, T.A., and Delgado-Escueta, A.V. (1986). Ecto-ATPase of mammalian synaptosomes: Identification and enzymic characterization. J. Neurochem. 47:976-986.

    Google Scholar 

  • Naito, S., and Ueda, T. (1985). Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44:99-109.

    Google Scholar 

  • Novelli, A., Reilly, J.A., Lysko, P.G., and Haennebery, R.C. (1998). Glutamates becomes neurotoxic via the NMDA receptor when intracellular energy levels are reduced. Brain Res. 451:205-212.

    Google Scholar 

  • Olney, J.W. (1980). Excitotoxic mechanisms of neurotoxicity. In (P.S. Spencer, and H.H. Schaumburg, eds.), Clinical and Experimental Neurotoxicology, Williams & Wilkins, Baltimore, MD, pp. 272-294.

    Google Scholar 

  • Ozawa, S., Kamyiar, K., and Tsuzuki, K. (1998). Glutamate receptors in the mamalian cerebral nervous system. Prog. Neurobiol. 54:581-618.

    Google Scholar 

  • Porciúncula, L.O., Dal-Pizzol, A., Jr., Tavares, R.G., Coitinho, A.S., Emanuelli, T., Souza, D.O., and Wajner, M. (2000). Inhibition of synaptosomal [3H]glutamate and [3H]glutamate binding to plasma membranes from brain of young rats by glutaric acid in vitro. J. Neurol. Sci. 173:93-96.

    Google Scholar 

  • Robinson, M.B., and Dowd, L.A. (1997). Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv. Pharmacol. 37:69-115.

    Google Scholar 

  • Silva, C.G., Bueno, A.R.F., Schuck, P.F., Leipnitz, G., Ribeiro, C.A.J., Wannmacher, C.M.D., Wyse, A.T.S., and Wajner, M. (2003). L-2-Hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats. Int. J. Dev. Neurosci. 21:217-224.

    Google Scholar 

  • Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heerschap, A., Ruitenbeek, W., Jost, C., van Deursen, J., Perryman, B., Pette, D., Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J., and Wieringa, B. (1997). Altered Ca++ response in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89:93-103.

    Google Scholar 

  • Ullrich, K., Flott-Rahmel, B., Schluff, P., Musshoff, U., Das, A., Lücke, T., Steinfeld, R., Christensen, E., Jacobs, C., Ludolph, A., Neu, A., and Röper, R. (1999). Glutaric aciduria type I: Pathomechanisms of neurodegeneration. J. Inherit. Metab. Dis. 22:392-403.

    Google Scholar 

  • Wolosker, H., Souza, D.O.G., and De Meis, L.J. (1996). Regulation of glutamate transport into synaptic vesicles by a chloride and proton gradient. J. Biol. Chem. 271:11726-11731.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junqueira, D., Brusque, A.M., Porciúncula, L.O. et al. Effects of L-2-Hydroxyglutaric Acid on Various Parameters of the Glutamatergic System in Cerebral Cortex of Rats. Metab Brain Dis 18, 233–243 (2003). https://doi.org/10.1023/A:1025559200816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025559200816

Navigation