Skip to main content
Log in

Differential pulse polarography: a method for the direct study of biosorption of metal ions by live bacteria from mixed metal solutions

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agraz R., Vanderwal A. and Vanleeuwen H.P. 1994. Voltammetric study of the interaction of cadmium with bacterial cells. Bioelec. Bioener. 34: 53–59.

    Article  CAS  Google Scholar 

  • Beveridge T.J. and Doyle R.J. 1989. Metal Ions and Bacteria. John Wiley and Sons, New York.

    Google Scholar 

  • Beveridge T.J., Hughes M.N., Lee H., Leung K.T., Poole R.K., Savvaidis I. et al. 1997. Metal-microbe interactions: contemporary approaches. Adv Microb Physiol. 38: 178–243.

    Google Scholar 

  • Bridge T.A.M., White C. and Gadd G.M. 1999. Exracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. Microbiology 145: 2987–2995.

    PubMed  CAS  Google Scholar 

  • Dunn G.M. and Bull A.T. 1983. Bioaccumulation of copper by a defined community of activated-sludge bacteria. Eur. J. Appl. Microbiol. Biotechnol. 17: 30–34.

    Article  CAS  Google Scholar 

  • Ehrlich H.L. 1997. Microbes and metals. Appl. Microbiol. Biotechnol 48: 687–692.

    Article  CAS  Google Scholar 

  • Escheverria J.C., Morera M.T., Mazkiaran C. and Garrido J.J. 1998. Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments. Environ. Pollution 101: 275–284.

    Article  Google Scholar 

  • Florence T.M. 1992. Trace element speciation by anodic stripping voltammetry. Analyst 117: 551–553.

    Article  PubMed  CAS  Google Scholar 

  • Gadd G.M. and White C. 1993. Microbial treatment of metal pollution-a-working biotechnology. Trends Biotechnol 11: 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Gibson J.F., Poole R.K., Hughes M.N. and Rees J.F. 1986. Ruthenium nitrosyl complexes-toxicity to Escherichia coli and yeasts and biosorption by marine-bacteria. Arch. Environ. Contam. Toxicol. 15: 519–528.

    Article  PubMed  CAS  Google Scholar 

  • Goncalves M.de.L.S., Sigg L., Reutlinger M. and Stumm W. 1987. Metal ion binding by biological surfaces. Voltammetric assessment in the presence of bacteria. Sci. Total Environ. 60: 105–120.

    Article  PubMed  CAS  Google Scholar 

  • Hughes M.N. and Poole R.K. 1989. Metals and Micro-organisms. Chapman and Hall, London.

    Google Scholar 

  • Laddaga R.A. and Silver S. 1985. Cadmium biosorption in Escherichia coli K-12. J. Bacteriol. 162: 1100–1105.

    PubMed  CAS  Google Scholar 

  • Nobar A.M. 1988. Studies on microbes isolated from metal-polluted environments, Ph.D, University of London.

  • Parker D.L., Mihalick J.E., Plude J.L., Plude M.J., Clark T.P., Egan L. et al. 2000. Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa f. flos-aquae strain C3-40. J. Appl. Phycol. 12: 219–224.

    Article  CAS  Google Scholar 

  • Poole R.K. and Gadd G.M. 1989. Metal-Microbe Interactions. IRL Press, Oxford.

    Google Scholar 

  • Pradham S. and Rai L.C. 2001. Biotechnological potential of Microcystis sp. in Cu, Zn and Cd biosorption from single and multimetallic systems. Biometals 14: 67–74.

    Article  Google Scholar 

  • De Rome L. and Gadd G.M. 1987. Measurement of copper biosorption in Saccharomyces cerevisiae using a Cu+2 selective electrode. FEMS Microbiol. Lett. 43: 283–287.

    Article  CAS  Google Scholar 

  • De Rome L. and Gadd G.M. 1991. Use of pelleted and immobilized yeast and fungal biomass for heavy-metal and radionuclide deterrecovery. J. Ind. Microbiol. 7: 97–104.

    Article  CAS  Google Scholar 

  • Savvaidis I., Nobar A., Hughes M.N. and Poole R.K. 1990. Displacement of surface-bound cationic dyes: a method for the rapid and semi-quantitative assay of metal binding to microbial cell surfaces. J. Microbiol. Meth. 11: 95–106.

    Article  CAS  Google Scholar 

  • Savvaidis I., Hughes M.N. and Poole R.K. 1992. Differential pulse polarography: a method of directly measuring biosorption of metal ions by live bacteria without separation of biomass and medium. FEMS Microbiol. Lett. 92: 181–186.

    Article  CAS  Google Scholar 

  • Smith W.L. and Gadd G.M. 2000. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J. Appl. Microbiol. 88: 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Webster E.A., Murphy A.J., Chudek J.A. and Gadd G.M. 1997. Metabolism-independent binding of toxic metals by Ulva lactuca: cadmium binds to oxygen-containing groups, as determined by NMR. Biometals. 10: 105–117.

    Article  CAS  Google Scholar 

  • White C. and Gadd G.M. 1995. Determination of metals and metal fluxes in algae and fungi. Sci. Total Environ. 176: 107–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Savvaidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savvaidis, I., Hughes, M.N. & Poole, R.K. Differential pulse polarography: a method for the direct study of biosorption of metal ions by live bacteria from mixed metal solutions. Antonie Van Leeuwenhoek 84, 99–107 (2003). https://doi.org/10.1023/A:1025489915704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025489915704

Navigation