Skip to main content
Log in

Influence of gizzard shad on phytoplankton size and primary productivity in mesocosms and earthen ponds in the southeastern U.S.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m−3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APHA), American Water Works Association and Water Pollution Control Federation, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington D.C.

  • Arcifa, M. S., T. G. Northcote & O. Froehlich, 1986. Fishzooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139: 49-58.

    Google Scholar 

  • Bayne, D. R., W. C. Seesock, C. E. Webber & J. A. McGuire, 1990. Cultural eutrophication ofWest Point lake-a 10 year study. Hydrobiologia 199: 1351-1360.

    Google Scholar 

  • Bottrell, H. H., and eight co-authors, 1976. A review of some problems in zooplankton production studies. Norw. J. Zoo. 24: 419-456

    Google Scholar 

  • Boyd, C. E., 1979. Water quality in warmwater fish ponds. Auburn University Agricultural Experiment Station, Auburn, AL: 359 p.

    Google Scholar 

  • Bremigan, M. T. & R. A. Stein, 1994. Gape-limited larval foraging and zooplankton size: implications for fish recruitment across systems. Can. J. Fish. Aquat. Sci. 51: 913-922.

    Google Scholar 

  • Christoffersen K., B. Riemann, A. Klysner & M. Søndergaard, 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol. Oceanogr. 38: 561-573.

    Google Scholar 

  • Claramunt, R. M. & D. H. Wahl, 2000. The effects of abiotic and biotic factors in determining larval fish growth rates: a comparison across species and reservoirs. Trans. Am. Fish. Soc. 129: 835-851.

    Google Scholar 

  • Culver, D. A., M. M. Boucherle, D. J. Bean & J.W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from lengthweight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390.

    Google Scholar 

  • Dettmers, J. M. & R. A. Stein, 1992. Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Trans. Am. Fish. Soc. 121: 494-507.

    Google Scholar 

  • Dettmers, J. M. & R. A. Stein, 1996. Quantifying linkages among gizzard shad, zooplankton, and phytoplankton in reservoirs. Trans. Am. Fish. Soc. 125: 27-41.

    Google Scholar 

  • DeVries, D. R. & R. A. Stein, 1991. Comparison of three zooplankton samplers: a taxon specific assessment. J. Plankton Res. 13: 53-59.

    Google Scholar 

  • DeVries, D. R. & R. A. Stein, 1992. Complex interactions between fish and zooplankton: quantifying the role of an open water planktivore. Can. J. Fish. Aquat. Sci. 49: 1216-1227.

    Google Scholar 

  • Diamond, J., 1986. Overview: laboratory experiments, field experiments, and natural experiments. In Diamond, J. & T. J. Case (eds), Community Ecology. Harper and Row Publishers, New York: 3-22.

    Google Scholar 

  • Drenner, R. W., J. R. Mummert, F. DeNoyelles, Jr. & D. Kettle, 1984. Selective particle ingestion by a filter feeding fish and its impacts on phytoplankton community structure. Limnol. Oceanogr. 29: 941-948.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkheld & M. D. McCracken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter feeding clupeid on plankton community structure. Can. J. Fish. Aquat. Sci. 43: 1935-1945.

    Google Scholar 

  • Drenner, R. W. & K. D. Hambright, 1999. Biomanipulation of fish assemblages as a lake restoration technique. Arch. Hydrobiol. 146: 129-165.

    Google Scholar 

  • Fogg, G. L. & B. Thake, 1987. Algal cultures and phytoplankton ecology,3rd ed. University of Wisconsin Press, Madison, WI. 269 p.

    Google Scholar 

  • Garvey, J. E. & R. A. Stein, 1998. Competition between larval fishes in reservoirs: the role of relative timing of appearance. Trans. Am. Fish. Soc. 127: 1021-1039.

    Google Scholar 

  • Hambright, K. D., 1994. Morphological constraints in the piscivoreplanktivore interaction: implications for the trophic cascade hypothesis. Limnol. Oceanogr. 39: 897-912.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol. Oceanogr. 18: 331-333.

    Google Scholar 

  • Jenkins, R. M., 1967. The influence of some environmental factors on standing crop and harvest of fishes in U.S. reservoirs. In Reservoir Fisheries Resources Symposium. Southern Division, The American Fisheries Society, Bethesda, Maryland, U.S.A.: 298-321.

    Google Scholar 

  • Johnson, B. M., R. A. Stein & R. F. Carline, 1988. Using a quadrat rotenone technique and bioenergetics modeling to evaluate forage fish size and abundance for stocked piscivores. Trans. Am. Fish. Soc. 117: 127-141.

    Google Scholar 

  • Kim, G. W. & D. R. DeVries, 2000. Effects of a selective gizzard shad reduction on trophic interactions and age-0 fishes in Walker County Lake, Alabama: a field-test of the middle-out regulation hypothesis. N. Am. J. Fish. Manage. 20: 860-872.

    Google Scholar 

  • Lazzaro, X., R. W. Drenner, R. A. Stein & J. D. Smith, 1992. Planktivores and plankton dynamics: effects of fish biomass and planktivore type. Can. J. Fish. Aquat. Sci. 49: 1466-1473.

    Google Scholar 

  • Lind, O. T., 1985. Handbook of common methods in limnology, 2nd ed. Kendall/ Hunt, Dubuque. IA: 199 pp.

    Google Scholar 

  • Maceina, M. J., P.W. Bettoli & D. R. DeVries, 1994. Use of a splitplot analysis of variance design for repeated-measures fishery data. Fisheries (Bethesda) 19(3): 14-20.

    Google Scholar 

  • Mather, M. E., M. J. Vanni, T. E. Wissing, S. A. Davis & M. H. Schaus, 1995. Regeneration of nitrogen and phosphorus by bluegill and gizzard shad: effect of feeding history. Can. J. Fish. Aquat. Sci. 52: 2327-2338.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43: 1571-1581.

    Google Scholar 

  • Mummert, J. R. & R. W. Drenner, 1986. Effect of fish size on the filtering efficiency and selective particle ingestion of a filter-feeding clupeid. Trans. Am. Fish. Soc. 115: 522-528.

    Google Scholar 

  • Mundahl, N. D., 1988. Nutritional quality of foods consumed by gizzard shad in western Lake Erie. Ohio J. Sci. 88: 110-113.

    Google Scholar 

  • Mundahl, N. D. & T. E. Wissing, 1987. Nutritional importance of detritivory in the growth and condition of gizzard shad in an Ohio reservoir. Environ. Biol. Fishes 20: 129-142.

    Google Scholar 

  • Mundahl, N. D. & T. E. Wissing, 1988. Selection and digestive efficiencies of gizzard shad feeding on natural detritus and two laboratory diets. Trans. Am. Fish. Soc. 117: 480-487.

    Google Scholar 

  • Noble, R. L., 1981. Management of forage fishes in impoundments of the southern United States. Trans. Am. Fish. Soc. 110: 738-750.

    Google Scholar 

  • Noble, R. L., 1986. Predator-prey interactions in reservoir communities. In Hall, G. E. & M. J. Van Den Avyle (eds), Reservoir Fisheries Management: Strategies for the 80s. Reservoir Committee, Southern Division American Fisheries Society, Bethesda, MD: 137-143.

    Google Scholar 

  • Partridge, D. G. & D. R. DeVries, 1999. Regulation of growth and mortality in larval bluegills: implications for juvenile recruitment. Trans. Am. Fish. Soc. 128: 625-638.

    Google Scholar 

  • Putnam, J. H. & D. R. DeVries, 1994. The influence of gizzard shad (Dorosoma cepedianum) on survival and growth of largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus), and white crappie (Pomoxis annularis). Final Report, Federal Aid in Fish Restoration Project F-40-R, Study XIV, Alabama Department of Conservation and Resources, Game and Fish Division, Montgomery, AL: 332 pp.

    Google Scholar 

  • Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. E. Garvey & R. A. Stein, 1997. Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnol. Oceanogr. 42: 1386-1397.

    Google Scholar 

  • Schlesinger, D. A., L. A. Molot & B. J. Schuter, 1981. Specific growth rates of freshwater algae in relation to cellsize and light intensity. Can. J. Fish. Aquat. Sci. 38: 1052-1058.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371-383.

    Google Scholar 

  • Shell, E. W., 1983. Fish farming research. Alabama Agricultural Experiment Station. Auburn University, AL: 108 pp.

    Google Scholar 

  • Stein, R. A., D. R. DeVries & J. M. Dettmers, 1995. Food-web regulation by a planktivore: exploring the generality of the trophic cascade hypothesis. Can. J. Fish. Aquat. Sci. 52: 2518-26.

    Google Scholar 

  • Taylor, M. P., 1971. Norris Reservoir fertilizer study. II. Effects of thermal stratification and nutrient availability on the productivity of reservoir phytoplankton. J. Tenn. Acad. Sci. 46: 90-97.

    Google Scholar 

  • Threlkeld, S. T. & R.W. Drenner, 1987. An experimental mesocosm study of residual and contemporary effects of an omnivorous filter-feeding, clupeid fish on plankton community structure. Limnol. Oceanogr. 32: 1331-1341.

    Google Scholar 

  • Timmons, T. J., W. L. Shelton & W. D. Davies, 1978. Initial fish population changes following impoundment of West Point Reservoir, Alabama-Georgia. Proc Annu. Conf. SE Assoc. Fish Wildl. Agencies 31: 312-317.

    Google Scholar 

  • Turner A. M. & G. G. Mittlelbach, 1992. Effects of grazer community composition and fish on algal dynamics. Can. J. Fish. Aquat. Sci. 49: 1908-1915.

    Google Scholar 

  • VanDyke, J. M., A. J. Leslie, Jr. & L. E. Nall, 1984. The effects of grass carp on the aquatic macrophytes of four Florida Lakes. J. Aquat. Plant Manage. 22: 87-95.

    Google Scholar 

  • Vanni, M. J., 1995. Nutrient transport and recycling by consumers in lake food webs: implications for algal communities. In Polis, G. A. & K. O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics. Chapman & Hall, London: 81-95.

    Google Scholar 

  • Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivore as mechanisms in the 'top-down' effect of fish on algae in lakes. Ecology 78: 21-40.

    Google Scholar 

  • Welker, M. T., C. L. Pierce & D. H. Wahl, 1994. Growth and survival of larval fishes: roles of competition and zooplankton abundance. Trans. Am. Fish. Soc. 123: 703-717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, D.L., Bayne, D.R., DeVries, D.R. et al. Influence of gizzard shad on phytoplankton size and primary productivity in mesocosms and earthen ponds in the southeastern U.S.. Hydrobiologia 495, 17–32 (2003). https://doi.org/10.1023/A:1025459422455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025459422455

Navigation