Skip to main content
Log in

New Approaches to Overcome Tolerance to Nitrates

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

In isolated cells (vascular smooth muscle, endothelium, platelets), perfused hearts, in vivo experiments, conscious instrumented animals, and in human subjects the induction of tachyphylaxis and tolerance to various exogenous NO-donors was analyzed. Various ways to circumvent tolerance were successfully tested.

Different nitrovasodilators were associated with different rates and magnitudes of generation of tolerance and reactive oxygen radicals (ROS) in all models tested, beginning with PETN (pentaerithrityltetranitrate) (lowest rate) and concluding with GTN (highest rate). This pattern was found in all models tested (isolated cells, perfused organs, and in vivo experiments). The observed changes in ROS production in isolated cells were identical to changes in ROS production in vascular smooth muscle, endothelial cells, and platelets. Thus, blood cells such as washed platelets could be used as marker cells to identify induction of tolerance and rise in platelet activity, closely reflecting changes in the rate of tolerance generation to nitrates associated with enhanced oxidant stress (ROS generation).

Generation of tachyphylaxis could be suppressed or even avoided by supplementation of appropriate antioxidants (SOD, vitamin C, DMSO, ß-blockers with antioxidant capacity, modulators of prostanoid metabolism such as ASS) in all models tested, including human subjects. Even fully developed tolerance (during non-intermittent GTN-administration) could be reversed by starting an appropriate antioxidant supplementation. This indicates that other potential factors involved in the generation of nitrovasodilator-associated tolerance (reducing the intended vasodilation and the concovactent decreases in blood pressure, namely augmented sympathetic and RAS-activity, changes in the activity of soluble guanylyl cyclase, protein kinase C, phosphodiesterase, etc.) are of minor importance. Thus, the treatment of tolerance under clinical conditions should closely target changes in redox potential and antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rudolph W,Dirschinger J,Kraus F,Reiniger G,Hall D. Nitrate therapy in patients with coronary artery disease, preparations and doses with and without development of tolerance. Z Kardiol 1990; 79 (Suppl.): III:57-III:65.

    Google Scholar 

  2. Bassenge E,Schwemmer M,Sommer O,Stalleicken D,Fink B. NO donor-derived nitric oxide and effects of platelet release products on coronary circulation. In: Yasue H, ed. Coronary Artery Spasm. Tokyo: Axel Springer Japan Publishing Inc., 2000: 41-48.

    Google Scholar 

  3. Schulz E,Tsilimingas N,Rinze R, et al. Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. Circulation 2002; 105(10): 1170-1175.

    Google Scholar 

  4. Kim D, Rybalkin SD,Pi X, et al. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 2001; 104(19): 2338-2343.

    Google Scholar 

  5. Mülsch A,Oelze M,Klöss S, et al. Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their down-stream target VASP in aorta. Circulation 2001.

  6. Yamakura F,Taka H,Fujimura T,Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 1998; 273(23): 14085-14089.

    Google Scholar 

  7. Bassenge E,Fink B. Tolerance to nitrates and simultaneous upregulation of platelet activity prevented by enhancing antioxidant state. Naunyn-Schmiedeberg's Arch Pharmacol 1996; 353: 363-367.

    Google Scholar 

  8. Münzel T,Giaid A,Kurz S,Stewart DJ,Harrison DG. Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc Natl Acad Sci USA 1995; 92: 5244-5248.

    Google Scholar 

  9. Laursen JB,Boesgaard S,Poulsen HE,Aldershvile J. Nitrate tolerance impairs nitric oxide-mediated vasodilation in vivo. Cardiovasc Res 1996; 31(5): 814-819.

    Google Scholar 

  10. Fink B,Bassenge E. Antioxidant supplementation with ascorbate reestablishes impaired vasodilation during fullscale 9 day nitroglycerin tolerance. Eur Heart J 1997; 18 (Suppl.): 496.

    Google Scholar 

  11. Mülsch A,Mordvintcev P,Bassenge E,Jung F,Clement B,Busse R. In vivo spin trapping of glyceryl trinitrate-derived nitric oxide in rabbit blood vessels and organs. Circulation 1995; 92: 1876-1882.

    Google Scholar 

  12. Münzel T,Sayegh H,Freeman BA,Tarpey MM,Harrison DG. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. J Clin Invest 1995; 95: 187-194.

    Google Scholar 

  13. Münzel T,Bassenge E. Long-term angiotensin-converting enzyme inhibition with high-dose enalapril retards nitrate tolerance in large epicardial arteries and prevents rebound coronary vasoconstriction in vivo. Circulation 1996; 93: 2052-2058.

    Google Scholar 

  14. Rajagopalan S,Kurz S,Münzel T, et al. Angiotensin IImediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97(8): 1916-1923.

    Google Scholar 

  15. Dikalov S,Fink B,Skatchkov M,Bassenge E. Formation of reactive oxygen species by PETN and GTN in vitro and development of nitrate tolerance. J Pharmacol Exp Ther 1998; 286: 938-944.

    Google Scholar 

  16. Bassenge E,Fink N,Skatchkov M,Fink B. Dietary supplement with vitamin C prevents nitrate tolerance. J Clin Invest 1998; 102(1): 67-71.

    Google Scholar 

  17. Dikalov S,Fink B,Skatchkov M,Bassenge E. Comparison of glyceryl trinitrate-induced with pentaerythrityl tetranitrate-induced in vivo formation of suproxide radicals: Effect of vitamin C. Free Rad Biol Med 1999; 27(1/2): 170-176.

    Google Scholar 

  18. MacKenzie A,Martin W. Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: Restoration by superoxide dismutase mimetics. Br J Pharmacol 1998; 124(4): 719-728.

    Google Scholar 

  19. Griendling KK,Minieri CA,Ollerenshaw JD,Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141-1148.

    Google Scholar 

  20. Mayer B,Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 1997; 22(12): 477-481.

    Google Scholar 

  21. Brennan LA, Roark EA, Black SM. Reactive oxygen species cause a dimer-monomer shift in endothelial NO synthase: A novel inhibitory mechanism. 2nd International Conference on Oxidative Stress and Aging, A5. 2-4-2001.

  22. Tiefenbacher CP,Chilian WM,Mitchell M,DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation 1996; 94: 1423-1429.

    Google Scholar 

  23. Vasquez-Vivar J,Kalyanaraman B,Martasek P, et al. Superoxide generation by endothelial nitric oxide synthase: The in-fluence of cofactors. Proc Natl Acad Sci USA 1998; 95: 9220-9225.

    Google Scholar 

  24. Gori T,Burstein JM,Ahmed S, et al. Folic acid prevents nitroglycerin-induced nitric oxide synthase dysfunction and nitrate tolerance. A human in vivo study. Circulation 2001; 104: 1119-1123.

    Google Scholar 

  25. Gori T,Parker JD. The puzzle of nitrate tolerance. Pieces smaller than we thought? Circulation 2002; 106: 2404-2408.

    Google Scholar 

  26. Gori T,Parker JD. Nitrate tolerance. A unifying hypothesis. Circulation 2002; 106: 2510-2513.

    Google Scholar 

  27. Bassenge E,Fink B,Schwemmer M. Oxidative stress, vascular dysfunction and heart failure. Heart Failure Reviews 1999; 4(2): 133-145.

    Google Scholar 

  28. Milstien S,Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: Implications for vascular endothelial function. Biochemical & Biophysical Research Communications 1999; 263: 681-684.

    Google Scholar 

  29. Heitzer T,Brockhoff C,Mayer B, et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: Evidence for a dysfunctional nitric oxide synthase. Circ Res (Online) 2000; 86 ( Online): E36-E41.

    Google Scholar 

  30. Munzel T,Li H,Mollnau H, et al. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res (Online) 2000; 86 ( Online): E7-E12.

    Google Scholar 

  31. Dikalov S,Skatchkov M,Fink B,Sommer O,Bassenge E. Formation of reactive oxygen species in various vascular cells during glyceryltrinate metabolism. J Cardiovasc Pharmacol Ther 1998; 3: 51-62.

    Google Scholar 

  32. Schwemmer M,Fink B,Köckerbauer R,Bassenge E. How urine analysis reflects oxidative stress-nitrotyrosine as a potential marker. Clin Chim Acta 2000; 297: 207-216.

    Google Scholar 

  33. Fink B,Bassenge E. Unexpected, tolerance-devoid vasomotor and platelet actions of pentaerytrityl tetranitrate. J Cardiovasc Pharmacol 1997; 30(6): 831-836.

    Google Scholar 

  34. Fink B,Bassenge E. Association between vascular tolerance and platelet upregulation: Comparison of nonintermittent administration of pentaerithrityltetranitrate and glyceryltrinitrate. J Cardiovasc Pharmacol 2002; 40: 890-897.

    Google Scholar 

  35. Jurt U,Gori T,Ravandi A,Babaer S,Zeman P,Parker JD. Differential effects of pentaerythritol tetranitrate and nitroglycerin on the development of tolerance and evidence of lipid peroxidation:Ahuman in vivo study. J Am Coll Cardiol 2001; 38: 854-859.

    Google Scholar 

  36. Chen Z,Zhang J,Stamler JS. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Nat Acad Science 2002; 99: 8306-8311.

    Google Scholar 

  37. Kojda G,Harrison D. Interactions between NO and reactive oxygen species: Pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 1999; 43(3): 562-571.

    Google Scholar 

  38. Liu P,Hock CE,Nagele R,Wong PY. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemiareperfusion injury in rats. Am J Physiol 1997; 272( 5 Pt 2): H2327-H2336.

    Google Scholar 

  39. Kaur H,Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 1994; 350(1): 9-12.

    Google Scholar 

  40. Bruijn LI,Beal MF,Becher MW, et al. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 1997; 94(14): 7606-7611.

    Google Scholar 

  41. Darley-Usmar VM,Wiseman H,Halliwell B. Nitric oxide and oxygen radicals: A question of balance. FEBS Lett 1995; 369: 131-135.

    Google Scholar 

  42. Fink B,Bassenge E. Exogenous NO in contrast to endogenous NO is subject to tolerance due to enhanced O-2 radical formation resulting from impaired NO-scavenging. Pfluegers Arch 1995; 429: R108.

    Google Scholar 

  43. Bassenge E,Fink B. Suppression of nitrate induced tolerance by vitamin C and other antioxidants. In: Moncada S,Stamler JS,Gross S,Higgs EA, eds. The Biology of Nitric Oxide, Part 5. London: Portland Press, 1996: 198.

    Google Scholar 

  44. Münzel T,Holtz J,Mülsch A,Stewart DJ,Bassenge E. Nitrate tolerance in epicardial arteries or in the venous system is not reversed by N-acetylcysteine in vivo, but toleranceindependent interactions exist. Circulation 1989; 79: 188-197.

    Google Scholar 

  45. Skatchkov M,Fink B,Dikalov S,Sommer O,Bassenge E. Antioxidant mediated prevention of nitrate tolerance is achieved through immediate inactivation of peroxinitrite. In: Moncada S,Stamler JS,Gross S,Higgs EA, eds. The Biology of Nitric Oxide, Part 5. London: Portland Press Ltd., 1996: 199.

    Google Scholar 

  46. Watanabe H,Kakihana M,Ohtsuka S,Sugishita Y. The preventive effect of vitamin E on nitrate tolerance. Circulation 1996; 94(8), S: I-503-I-504.

    Google Scholar 

  47. Paolisso G,Balbi V,Volpe C, et al. Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. J Am Coll Nutr 1995; 14: 387-392.

    Google Scholar 

  48. Heitzer T,Just HJ,Münzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996; 94(1): 6-9.

    Google Scholar 

  49. Beckman JS,Ischiropoulos H,Zhu L, et al. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 1992; 298: 438-445.

    Google Scholar 

  50. Ting HH,Timimi FK,Boles KS,Creager SJ,Ganz P,Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996; 97(1): 22-28.

    Google Scholar 

  51. Levine GN,Frei B,Koulouris SN,Gerhard MD,Keaney JF,Vita JA. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996; 93(6): 1107-1113.

    Google Scholar 

  52. Ting HH,Timimi FK,Haley EA,Roddy MA,Ganz P,Creager MA. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997; 95(12): 2617-2622.

    Google Scholar 

  53. Packer M,Bristow MR,Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group [see comments]. N Engl J Med 1996; 334(21): 1349-1355.

    Google Scholar 

  54. Weglicki WB,Mak IT,Simic MG. Mechanisms of cardiovascular drugs as antioxidants [Review] [41 refs.]. J Mol Cell Cardiol 1990; 22(10): 1199-1208.

    Google Scholar 

  55. Yue TL,Cheng HY,Lysko PG, et al. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 1992; 263(1): 92-98.

    Google Scholar 

  56. Bassenge E,Fink N,Fink B. Effects of oxidant stress circumvented by antioxidants vitamin C or by beta-blocker carvedilol metabolite BM 910228. Pfluegers Arch Eur J Physiol 1998; 435: R74.

    Google Scholar 

  57. Kramer JH,Weglicki WB. A hydroxylated analog of the beta-adrenoceptor antagonist, carvedilol, affords exceptional antioxidant protection to postischemic rat hearts. Free Rad Biol Med 1996; 21(6): 813-825.

    Google Scholar 

  58. Dück KD,Richard F. Langzeitnitrattherapie bei koronarer Herzkrankheit-Wirkungsverlust durch Toleranzentwicklung? (Long-term therapy of coronary artery disease-Loss of efficacy through development of tolerance?). Z Gesamte Inn Med 1990; 24(45): 736-741.

    Google Scholar 

  59. Radi R,Rodriguez M,Castro L,Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 1994; 308(1): 89-95.

    Google Scholar 

  60. Stewart DJ,Münzel T,Holtz J,Bassenge E. Discrepancy between initial and steady-state resistance vessel responsiveness to short-term nitroglycerin exposure in the hindlimb of conscious dogs. J Cardiovasc Pharmacol 1988; 12: 144-151.

    Google Scholar 

  61. Persson MG,Agvald P,Gustafsson LE. Detection of nitric oxide in exhaled air during administration of nitroglycerin in vivo. Br J Pharmacol 1994; 111(3): 825-828.

    Google Scholar 

  62. Tiefenbacher CP,Bleeke T,Vahl C,Amann K,Vogt A,bler W. Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in atherosclerosis. Circulation (Online) 2000 Oct 31; 102 ( Online): 2172-2179.

    Google Scholar 

  63. Nunes GL,Robinson K,Kalynych A,King SB,Sgoutas DS,Berk BC. Vitamins C and E inhibit O2-production in the pig coronary artery [see comments]. Circulation 1997; 96(10): 3593-3601.

    Google Scholar 

  64. Braughler JM. Soluble guanylate cyclase activation by nitric oxide and its reversal. Involvement of sulfhydryl group oxidation and reduction. Biochem Pharmacol 1983; 32: 811-818.

    Google Scholar 

  65. Retsky KL,Freeman MW,Frei B. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti-rather than prooxidant activity of vitamin C in the presence of transition metal ions. J Biol Chem 1993; 268(2): 1304-1309.

    Google Scholar 

  66. Lehr HA,Weyrich AS,Saetzler RK, et al. Vitamin C blocks inflammatory platelet-activating factor mimetics created by cigarette smoking [see comments]. J Clin Invest 1997; 99(10): 2358-2364.

    Google Scholar 

  67. Fukui T,Ishizaka N,Rajagopalan S, et al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997; 80(1): 45-51.

    Google Scholar 

  68. Sun D,Smith CJ,Sessa WC,Hoegler C,Xu X,Hintze TH. NO-releasing agent, CAS 936, selectively downregulates ECNOS gene expression in dog aortic endothelium. Circulation 1994; 90/2: I-406.

    Google Scholar 

  69. Oberle S,Polte T,Abate A,Podhaisky HP,Schroder H. Aspirin increases ferritin synthesis in endothelial cells:Anovel antioxidant pathway. Circ Res 1998; 82(9): 1016-1020.

    Google Scholar 

  70. Lüscher TF,Diederich D,Buhler FR,Vanhoutte PM. Interactions between platelets and the vessel wall-role of endothelium-derived vasoactive substances. Hypertens Vols 1990; 1: 637-648.

    Google Scholar 

  71. Kinn JW,Bache RJ. Effect of platelet activation in coronary collateral blood flow. Circulation 1998; 98: 1431-1437.

    Google Scholar 

  72. Loots W,De CF. 5-Hydroxytryptamine dominates over thromboxane A2 in reducing collateral blood flow by activated platelets. Am J Physiol 1993; 265( 1 Pt 2): H158-H164.

    Google Scholar 

  73. Willerson JT,Golino P,Eidt J,Yao SK,Buja LM. Potential usefulness of combined thromboxane A2 and serotonin receptor blockade for preventing the conversion from chronic to acute coronary artery disease syndromes. [Review] [41 refs.]. Am J Cardiol 1990; 66(16): 48G-53G.

    Google Scholar 

  74. Gallagher KP,Osakada G,Kemper WS,Ross J Jr. Cyclical coronary flow reductions in conscious dogs equipped with ameroid constrictors to produce severe coronary narrowing. Basic Res Cardiol 1985; 80: 100-106.

    Google Scholar 

  75. Houston DS,Shepherd JT,Vanhoutte PM. Aggregating human platelets cause direct contraction and endotheliumdependent relaxation of isolated canine coronary arteries. Role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest 1986; 78: 539-544.

    Google Scholar 

  76. Nikol S,Huehns TY,Hofling B. Novel uses and potential for calcium antagonists in revascularization. Eur Heart J 1997; (Suppl A): A105-A109.

  77. Finci L,Hofling B,Ludwig B, et al. Sulotroban during and after coronary angioplasty. A double-blind, placebo controlled study. Z Kardiol 1989; 78(Suppl 3): 50-54.

    Google Scholar 

  78. Kojda G,Stein D,Kottenberg E,Schnaith EM,Noack E. In vivo effects of pentaerythrityl-tetranitrate and isosorbide-5-mononitrate on the development of atherosclerosis and endothelial dysfunction in cholesterol-fed rabbits. J Cardiovasc Pharmacol 1995; 25(5): 763-773.

    Google Scholar 

  79. Dikalov S,Skatchkov M,Bassenge E. Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxypyrrolidine and 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants. Biochem Biophys Res Comm 1997; 231(3): 701-704.

    Google Scholar 

  80. Dikalov S,Skatchkov M,Bassenge E. Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-Hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem Biophys Res Comm 1997; 230(1): 54-57.

    Google Scholar 

  81. Evans RM,Currie L,Campbell A. The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. Br J Nutrition 1982; 47(3): 473-482.

    Google Scholar 

  82. Bassenge E,Schwemmer M,Stoeter M,Fink B. Potentiation of sildenafil-induced hypotension is minimal with nitrates generating a radical intermediate. Journal of Cardiovascular Pharmacology 2001; 38: 145-155.

    Google Scholar 

  83. Fink B,Schwemmer M,Fink N,Bassenge E. Tolerance to nitrates with enhanced radical formation suppressed by carvedilol. J Cardiovasc Pharmacol 1999; 34(6): 800-805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwemmer, M., Bassenge, E. New Approaches to Overcome Tolerance to Nitrates. Cardiovasc Drugs Ther 17, 159–173 (2003). https://doi.org/10.1023/A:1025343919959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025343919959

Navigation