Skip to main content
Log in

Adaptation to Heat of Cardiomyoblasts in Culture Protects Them against Heat Shock: Role of Nitric Oxide and Heat Shock Proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Dosed adaptation to environmental factors is an efficient non-drug means for increasing the resistance of organs or the body as a whole. We demonstrated earlier that nitric oxide (NO) plays an important role in adaptive defense of the organism, in particular due to activation of heat shock protein (HSP) synthesis. A key question remained open—to what extent the formation of adaptive defense depends on central mechanisms and to what extent on the intracellular mechanisms immediately responding to the adapting factor, and whether the NO-dependent activation of HSP synthesis plays a role in adaptation of isolated cells. In the present study we looked into the possibility of producing a protective effect of adaptation to heat in cell culture. A 6-day adaptation to heat limited to 17% the decrease in metabolic activity induced by heat shock in H9c2 cardiomyoblasts. The development of adaptation was associated with increased NO production. Treatment of cells with the inhibitor of NO synthase L-NNA (100 μM) prevented the development of adaptive protection. Adaptation of cell culture enhanced synthesis of HSP70 but not HSP27. Blockade of HSP70 synthesis with quercetin (50 μM) left unchanged the protective effect of adaptation. Inhibition of NO synthesis restricted the adaptation-induced HSP70 synthesis. Therefore, the formation of adaptation at the cell level may result from a direct action of an environmental factor without participation of neurohumoral factors. Such adaptation involves NO-dependent mechanisms divorced from the activation of HSP70 synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Bolli, R. (2000) Circ. Res., 87, 972-983.

    Google Scholar 

  2. Murry, C. E., Jennings, R. B., and Reimer, K. A. (1986) Circulation, 74, 1124-1136.

    Google Scholar 

  3. Currie, R. W., Karmazyn, M., Kloc, M., and Mailer, K. (1988) Circ. Res., 63, 543-549.

    Google Scholar 

  4. Pelham, H. R. B. (1986) Cell, 46, 517-528.

    Google Scholar 

  5. Hightower, L. E. (1991) Cell, 66, 191-197.

    Google Scholar 

  6. Latchman, D. S. (2001) Cardiovasc. Res., 51, 637-646.

    Google Scholar 

  7. Hartl, F. (1996) Nature, 381, 571-579.

    Google Scholar 

  8. Heneka, M. T., Sharp, A., Klockgether, T., Gavrilyuk, V., and Feinstein, D. L. (2000) J. Cerebr. Blood Flow Metab., 20, 800-811.

    Google Scholar 

  9. Beere, H. M., and Green, D. R. (2001) Trends Cell. Biol., 11, 6-10.

    Google Scholar 

  10. Raeburn, C. D., Cleveland, J. C., Jr., Zimmerman, M. A., and Harken, A. H. (2001) Arch. Surg., 136, 1263-1266.

    Google Scholar 

  11. Meerson, F. Z. (1984) Adaptation, Stress and Prophylaxis, Springer Verlag, Berlin.

    Google Scholar 

  12. Meerson, F. Z., Belkina, L. M., and Dyussenov, S. S. (1986) Kardiologiya, No. 8, 19-24.

    Google Scholar 

  13. Meerson, F. Z., Belkina, L. M., and Dyussenov, S. S. (1986) Byull. Eksp. Biol. Med., No. 11, 512-515.

    Google Scholar 

  14. Meerson, F. Z., and Malyshev, I. Yu. (1993) Phenomenon of Adaptive Stabilization of Structures and Protection of the Heart [in Russian], Nauka, Moscow.

    Google Scholar 

  15. Malyshev, I. Yu., and Manukhina, E. B. (1998) Biochemistry (Moscow), 63, 840-853.

    Google Scholar 

  16. Kim, Y.-M., Bombeck, C. A., and Billiar, T. R. (1999) Circ. Res., 84, 253-256.

    Google Scholar 

  17. Siow, R. C. M., Sato, H., and Mann, G. E. (1999) Cardiovasc. Res., 41, 385-394.

    Google Scholar 

  18. Lamas, S., Perez-Sala, D., and Moncada, S. (1998) Trends Pharmacol. Sci., 19, 436-438.

    Google Scholar 

  19. Du Toit, E. F., McCarthy, J., Miyashiro, J., Opie, L. H., and Brunner, F. (1998) Br. J. Pharmacol., 123, 1159-1167.

    Google Scholar 

  20. Malyshev, I. Yu., Bayda, L. A., Trifonov, A. I., Larionov, N. P., Kubrina, L. D., Mikoyan, V. D., Vanin, A. F., and Manukhina, E. B. (2000) Physiol. Res., 49, 99-105.

    Google Scholar 

  21. Stein, B., Frank, P., Schmitz, W., Scholz, H., and Thoenes, M. (1996) J. Mol. Cell Cardiol., 28, 1631-1639.

    Google Scholar 

  22. Hosokawa, N., Hirayoshi, K., Kudo, H., Takechi, H., Aoike, A., Kawai, K., and Nagata, K. (1992) Mol. Cell. Biol., 12, 3490-3498.

    Google Scholar 

  23. Wu, B. Y., and Yu, A. C. (2000) J. Neurosci. Res., 62, 730-736.

    Google Scholar 

  24. Mosmann, T. (1983) J. Immunol. Meth., 65, 55-63.

    Google Scholar 

  25. Gomez, L. A., Alekseev, A. E., Aleksandrova, L. A., Brady, P. A., and Terzic, A. (1997) J. Mol. Cell. Cardiol., 29, 1255-1266.

    Google Scholar 

  26. Rossig, L., Hoffmann, J., Hugel, B., Mallat, Z., Haase, A., Freyssinet, J. M., Tedgui, A., Aicher, A., Zeiher, A. M., and Dimmeler, S. (2001) Circulation, 104, 2182-2187.

    Google Scholar 

  27. Gabryel, B., Adamek, M., and Trzeciak, H. I. (2001) Neurotoxicology, 22, 455-465.

    Google Scholar 

  28. Kong, J. Y., and Rabkin, S. W. (2000) Biochim. Biophys. Acta, 1485, 45-55.

    Google Scholar 

  29. Zeng, H., Spencer, N. Y., and Hogg, N. (2001) Am. J. Physiol. Heart Circ. Phys. Vol., 281, H432-H439.

    Google Scholar 

  30. Chae, H. J., Kim, H. R., Kwak, Y. G., Ko, J. K., Joo, C. U., and Chae, S. W. (2001) Immunopharmacol. Immuno-toxicol., 23, 187-204.

    Google Scholar 

  31. Murphy, M. P. (1999) Biochim. Biophys. Acta, 1411, 401-414.

    Google Scholar 

  32. Kim, Y.-M., de Vera, M. E., Watkins, S. C., and Billiar, T. R. (1997) J. Biol. Chem., 272, 1402-1411.

    Google Scholar 

  33. Narberhaus, F. (2002) Microbiol. Mol. Biol. Rev., 66, 64-93.

    Google Scholar 

  34. Moseley, P. L. (1997) J. Appl. Physiol., 83, 1413-1417.

    Google Scholar 

  35. Wiegant, F. A. C., Souren, J. E. M., van Rijn, J., and van Wijk, R. (1994) Toxicology, 94, 143-159.

    Google Scholar 

  36. Samali, A., Holmberg, C. I., Sistonen, L., and Orrenius, S. (1999) FEBS Lett., 461, 306-310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monastyrskaya, E.A., Andreeva, L.V., Duchen, M.R. et al. Adaptation to Heat of Cardiomyoblasts in Culture Protects Them against Heat Shock: Role of Nitric Oxide and Heat Shock Proteins. Biochemistry (Moscow) 68, 816–821 (2003). https://doi.org/10.1023/A:1025047303523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025047303523

Navigation