Skip to main content
Log in

Novel Polyester-Polysaccharide Nanoparticles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of the present study was to develop a new type of core-shell nanoparticles from a family of novel amphiphilic copolymers, based on dextran (DEX) grafted with poly(ε–caprolactone) (PCL) side chains (PCL-DEX).

Methods. A family of PCL-DEX copolymers was synthesized in which both the molecular weight and the proportion by weight of DEX in the copolymer were varied. The nanoparticles were prepared by a technique derived from emulsion-solvent evaporation, during which emulsion stability was investigated using a Turbiscan. The nanoparticle size distribution, density, zeta potential, morphology, and suitability for freeze-drying were determined.

Results. Because of their strongly amphiphilic properties, the PCL-DEX copolymers were able to stabilize o/w emulsions without the need of additional surfactants. Nanoparticles with a controlled mean diameter ranging from 100 to 250 nm were successfully prepared. A mechanism of formation of these nanoparticles was proposed. Zeta potential measurements confirmed the presence of a DEX coating.

Conclusion. A new generation of polysaccharide-decorated nanoparticles has been successfully prepared from a family of PCL-DEX amphiphilic copolymers. They may have potential applications in drug encapsulation and targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600-1603 (1994).

    Google Scholar 

  2. D. Bazile, C. Prud'homme, M. T. Bassoullet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth MePEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84:493-498 (1995).

    Google Scholar 

  3. M. T. Peracchia, C. Vauthier, D. Desmaele, A. Gulik, J. C. Dedieu, M. Demoy, J. d'Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm. Res. 15:550-556 (1998).

    Google Scholar 

  4. B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D'Angelo, L. Cattel, and P. Couvreur. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89:1452-1464 (2000).

    Google Scholar 

  5. E. Österberg, K. Bergstrom, K. Holmberg, T. P. Schuman, J. A. Riggs, N. L. Burns, J. M. Van Alstine, and J. M. Harris. Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J. Biomed. Mater. Res. 29:741-747 (1995).

    Google Scholar 

  6. C. Rouzes, R. Gref, M. Leonard, A. De Sousa Delgado, and E. Dellacherie. Surface modification of poly(lactic acid) nanospheres using hydrophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique. J. Biomed. Mater. Res. 50:557-565 (2000).

    Google Scholar 

  7. Y. Ohya, S. Maruhashi, and T. Ouchi. Preparation of poly(lactic acid)-grafted amylose through the trimethylsilyl protection method and its biodegradation. Macromol. Chem. Phys. 199:2017-2022 (1998).

    Google Scholar 

  8. Y. Li, C. Volland, and T. Kissel. Biodegradable brush-like graft polymers from poly(D,L-lactide) or poly(D,L-lactide-coglycolide) and charge-modified, hydrophilic dextrans as backbone-in vitro degradation and controlled releases of hydrophilic macromolecules. Polymer 39:3087-3097 (1998).

    Google Scholar 

  9. G. Schwach, J. Coudane, R. Engel, and M. Vert. More about the polymerization of lactides in the presence of stannous octoate. J. Polym. Sci. Pol. Chem. 35:3431-3440 (1997).

    Google Scholar 

  10. R. Gref, J. Rodrigues, and P. Couvreur. Polysaccharides grafted with polyesters: novel amphiphilic copolymers for biomedical applications. Macromolecules 35:9861-9867 (2002).

    Google Scholar 

  11. J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, and D.R. Bloch. Polymer Handbook. J. Wiley and sons, New York, 1999.

    Google Scholar 

  12. C. G. Pitt. Poly-ɛ-caprolactone and its copolymers. In M. Chasin and R. Langer (eds.), Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, 1990, pp. 71-120.

    Google Scholar 

  13. P. D. Scholes, A. G. Coombes, L. Illum, S. S. Davis, J. F. Watts, C. Ustariz, M. Vert, and M. C. Davies. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J. Control. Release 59:261-278 (1999).

    Google Scholar 

  14. J. Briant. PhÉnomÈnes d'interface: Agents de Surface. Editions Technip, Paris, 1989.

    Google Scholar 

  15. P. Quellec, R. Gref, L. Perrin, E. Dellacherie, F. Sommer, J. M. Verbavatz, and M. J. Alonso. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J. Biomed. Mater. Res. 42:45-54 (1998).

    Google Scholar 

  16. O. Mengual, G. Meunier, I. Cayre, K. Puech, and P. Snabre. Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000. Colloids Surf. A. Physicochem. Eng. Aspects 152:111-123 (1999).

    Google Scholar 

  17. R. Bodmeier and J. W. McGinity. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method. Int. J. Pharm. 43:179-186 (1988).

    Google Scholar 

  18. D. H. Napper. Steric stabilization. J. Colloid Interface Sci. 58:390-407 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxandra Gref.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemarchand, C., Couvreur, P., Besnard, M. et al. Novel Polyester-Polysaccharide Nanoparticles. Pharm Res 20, 1284–1292 (2003). https://doi.org/10.1023/A:1025017502379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025017502379

Navigation