Skip to main content
Log in

Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The location of centromeres and telomeres was studied in human and mouse lymphocyte nuclei (G0) employing 3D-FISH, confocal microscopy, and quantitative image analysis. In both human and murine lymphocytes, most centromeres were found in clusters at the nuclear periphery. The distribution of telomere clusters, however, differed: in mouse nuclei, most clusters were detected at the nuclear periphery, while, in human nuclei, most clusters were located in the nuclear interior. In human cell nuclei we further studied the nuclear location of individual centromeres and their respective chromosome territories (CTs) for chromosomes 1, 11, 12, 15, 17, 18, 20, and X. We found a peripheral location of both centromeres and CTs for 1, 11, 12, 18, X. A mostly interior nuclear location was observed for CTs 17 and 20 and the CTs of the NOR-bearing acrocentric 15 but the corresponding centromeres were still positioned in the nuclear periphery. Autosomal centromeres, as well as the centromere of the active X, were typically located at the periphery of the respective CTs. In contrast, in about half of the inactive X-CTs, the centromere was located in the territory interior. While the centromere of the active X often participated in the formation of centromere clusters, such a participation was never observed for the centromere of the inactive X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abranches R, Beven AF, Aragon-Alcaide L, Shaw PJ (1998). Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol 143: 5-12.

    Article  PubMed  CAS  Google Scholar 

  • Alcobia I, Dilao R, Parreira L (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns [published erratum appears in Blood 2000 Aug 1;96(3): 987]. Blood 95: 1608-1615.

    PubMed  CAS  Google Scholar 

  • Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2: 59-67.

    Article  PubMed  CAS  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163: 676-677.

    Google Scholar 

  • Baxter J, Merkenschlager M, Fisher AG (2002) Nuclear organ-isation and gene expression. Curr Opin Cell Biol. 14: 372-376.

    Article  PubMed  CAS  Google Scholar 

  • Bolzer A, Craig JM, Cremer T, Speicher MR (1999) A complete set of repeat-depleted, PCR-amplifiable, human chromosome-specific painting probes. Cytogenet Cell Genet 84: 233-240.

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10: 211-219.

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91: 845-854.

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3: 207-217.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho C, Pereira HM, Ferreira J et al. (2001) Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell 12: 3563-3572.

    PubMed  CAS  Google Scholar 

  • Chevret E, Volpi EV, Sheer D (2000) Mini review: form and function in the human interphase chromosome. Cytogenet Cell Genet 90: 13-21.

    Article  PubMed  CAS  Google Scholar 

  • Choo, AKH (1997) The Centromere. Oxford, New York, Tokyo: Oxford University Press, pp 304.

    Google Scholar 

  • Cooke, HJ, Hindley J (1979) Cloning of human satellite III DNA: different components are on different chromosomes. Nucleic Acids Res 6: 3177-3197.

    PubMed  CAS  Google Scholar 

  • Craig JM, Kraus J, Cremer T (1997) Removal of repetitive sequences from FISH probes using PCR-assisted affinity chromatography. Hum Genet 100: 472-476.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292-301.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kreth G, Koester H (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10: 179-212.

    PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541-567.

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119-1131.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Jauch A, Kienle D et al. (1998a) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6: 25-33.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Eils R, Satzler K et al. (1998b) Evidence against a looped structure of the inactive human X-chromosome territory. Exp Cell Res 240: 187-196.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Schiebel K, Little G et al. (1999). The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity [In Process Citation]. Exp Cell Res 252: 363-375.

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6: 551-558.

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356: 297-310.

    Article  PubMed  CAS  Google Scholar 

  • Eils R, Dietzel S, Bertin E et al. (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135: 1427-1440.

    Article  PubMed  CAS  Google Scholar 

  • Falk M, Lukasova E, Kozubek S, Kozubek M (2002) Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes. Gene 292: 13-24.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson M, Ward DC (1992) Cell cycle dependent chromosomalmovement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101: 557-565.

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99: 14584-14589.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Capanna E, Redi CA (2002) High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet Genome Res 96: 125-129.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Schmid M (1991) Chromosome topology in mammalian interphase nuclei. Exp Cell Res 192: 325-332.

    Article  PubMed  CAS  Google Scholar 

  • Hulspas R, Houtsmuller AB, Krijtenburg PJ, Bauman JG, Nanninga N (1994) The nuclear position of pericentromeric DNA of chromosome 11 appears to be random in G0 and non-random in G1 human lymphocytes. Chromosoma 103: 286-292.

    PubMed  CAS  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl Acids Res 19: 4780.

    PubMed  CAS  Google Scholar 

  • Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347: 400-402.

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Ackford HE, Taylor BA, Cooke HJ (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11: 235-241.

    Article  PubMed  CAS  Google Scholar 

  • Kozubek S, Lukasova E, Jirsova P et al. (2002) 3D Structure of the human genome: order in randomness. Chromosoma 111: 321-331.

    PubMed  CAS  Google Scholar 

  • Kurz A, Lampel S, Nickolenko JE et al. (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135: 1195-1205.

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR (2000) Higher levels of organization in the interphase nucleus of cycling and differentiated cells. Microbiol Mol Biol Rev 64: 138-152.

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X chromosome of the mouse. Nature 190: 372.

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157: 579-589.

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002b). Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159: 753-763.

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L (1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci USA 81: 3123-3127.

    Article  PubMed  CAS  Google Scholar 

  • Martens UM, Brass V, Engelhardt M et al. (2000) Measurement of telomere length in haematopoietic cells using in situ hybridization techniques. Biochem Soc Trans 28: 245-250.

    PubMed  CAS  Google Scholar 

  • Mitchell AR, Gosden JR, Miller DA (1985) A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes. Chromosoma 92: 369-377.

    Article  PubMed  CAS  Google Scholar 

  • Nagele RG, Velasco AQ, Anderson WJ et al. (2001) Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. J Cell Sci 114: 377-388.

    PubMed  CAS  Google Scholar 

  • Nogami M, Kohda A, Taguchi H, Nakao M, Ikemura T, Okumura K (2000) Relative locations of the centromere and imprinted SNRPN gene within chromosome 15 territories during the cell cycle in HL60 cells. J Cell Sci 113 (Pt 12): 2157-2165.

    PubMed  CAS  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12: 425-432.

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168: 1356-1358.

    PubMed  CAS  Google Scholar 

  • Rawlins DJ, Shaw PJ (1990) Localization of ribosomal and telomeric DNA sequences in intact plant nuclei by in-situ hybridization and three-dimensional optical microscopy. J Microsc 157 (Pt 1): 83-89.

    PubMed  CAS  Google Scholar 

  • Schubeler D, Lorincz MC, Cimbora DM et al. (2000) Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol 20: 9103-9112.

    Article  PubMed  CAS  Google Scholar 

  • Skalnikova M, Kozubek S, Lukasova E et al. (2000) Spatial arrangement of genes, centromeres and chromosomes in human blood cell nuclei and its changes during the cell cycle, differentiation and after irradiation. Chromosome Res 8: 487-499.

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Cavallo A, Schermelleh L et al. (2002a) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276: 10-23.

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Walter J, Cremer M, Habermann F, Schermelleh L, Cremer T (2002b) FISH on Three-dimensionally Preserved Nuclei. Oxford: Oxford University Press, pp 119-157.

    Google Scholar 

  • Solovei I, Schermelleh L, Düring K et al. (2003). Differences in centromere positioning during cell cycle and at G0 in four types of human cells. (In preparation).

  • Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. Embo J 20: 2867-2874.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Muller S, Neusser M et al. (2002a) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99: 4424-4429.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002b) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504: 37-45.

    PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al. (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113 (Pt 9): 1565-1576.

    PubMed  CAS  Google Scholar 

  • Vourc'h C, Taruscio D, Boyle AL, Ward DC (1993) Cell cycle-dependent distribution of telomeres, centromeres, and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res 205: 142-151.

    Article  PubMed  Google Scholar 

  • Wachtler F, Hopman AH, Wiegant J, Schwarzacher HG (1986) On the position of nucleolus organizer regions (NORs) in interphase nuclei. Studies with a new, non-autoradiographic in situ hybridization method. Exp Cell Res 167: 227-240.

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160: 685-697.

    Article  PubMed  CAS  Google Scholar 

  • Weimer R, Haaf T, Kruger J, Poot M, Schmid M (1992) Characterization of centromere arrangements and test for random distribution in G0, G1, S, G2, G1, and early S′ phase in human lymphocytes. Hum Genet 88: 673-682.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Smith KD, Sutherland J (1983) Isolation and characterization of a major tandem repeat family from the human X chromosome. Nucl Acids Res 11: 2017-2033.

    PubMed  CAS  Google Scholar 

  • Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272: 163-175.

    Article  PubMed  CAS  Google Scholar 

  • Zijlmans JM, Martens UM, Poon SS et al. (1997) Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 94: 7423-7428.

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247: 176-188.

    Article  PubMed  CAS  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1: 93-106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Solovei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weierich, C., Brero, A., Stein, S. et al. Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosome Res 11, 485–502 (2003). https://doi.org/10.1023/A:1025016828544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025016828544

Navigation