Skip to main content
Log in

Acute ischemia/hypoxia in rat hippocampal neurons activates nuclear ubiquitin and alters both chromatin and DNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated early alterations in rat neurons after experimental ischemic stress. Transient ischemia was generated by bilateral occlusion of the carotids after hypoxia. Data show a relevant increase of the nuclear level of ubiquitin 2 h post-stress as evaluated by immuno-cytolocalization. Ubiquitin returns to normal levels after 6 h. The increase in ischemic/hypoxic rats was localized preferentially in nuclei of hippocampal neurons, although some augmentation was also shown essentially in dendrites. The activation of ubiquitin system is related to a defective homeostasis and might trigger different degenerative processes. With respect to this, we observed chromatin alterations by densitometric analysis. The shown extensive DNA degeneration is consistent with the occurrence of necrotic phenomena at an early stage. However the parallel internucleosomal specific DNA fragmentation, strongly suggests that apoptotic events also occur. In any case both necrosis and apoptosis are likely to occur at same time, although apoptosis is less extensive, and two phenomena take place in different neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hershko A, Ciechanower A: The ubiquitin system for protein degradation. Ann Rev Biochem 61: 761-807, 1992

    Google Scholar 

  2. Ciechanower A, Schwartz AL: The ubiquitin-mediated proteolytic pathway: Mechanism of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. Faseb J 8: 182-191, 1994

    Google Scholar 

  3. Kirino T: Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57-69, 1982

    Google Scholar 

  4. Pulsinelli WA, Brierley JB, Plum F: Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491-498, 1982

    Google Scholar 

  5. Smith ML, Auer RN, Siesjo BK: The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64: 319-332, 1984

    Google Scholar 

  6. Wieloch T: Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res 63: 69-85, 1985

    Google Scholar 

  7. Petito CK, Feldmann E, Pulsinelli WA, Plum F: Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37: 1281-1286, 1987

    Google Scholar 

  8. Leoni S, Brambilla D, Risuleo G, de Feo G, Scarsella G: Effect of different whole body hypertermic sessions on the heat shock response in mice liver and brain. Mol Cell Biochem 204: 41-47, 2000

    Google Scholar 

  9. Liu Y, Kato H, Nakata N, Kogure K: Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 56: 921-927, 1993

    Google Scholar 

  10. Kato H, Liu Y, Kogure K, Kato K: Induction of 27-kDa heat shock protein cerebral ischemia in a rat model of ischemic tolerance. Brain Res 63: 69-85, 1994

    Google Scholar 

  11. Torregrosa G, Barbera MD, Orti M, Centeno JM, Salom JB, Justicia C, Planas AM, Alborch E: Temporospatial expression of HSP72 and c-JUN, and DNA fragmentation in goat hippocampus after global cerebral ischemia. Hippocampus 11: 146-56, 2001

    Google Scholar 

  12. Hayashi T, Takada K, Matsuda M: Post transient ischemia increase in ubiquitin conjugates in the early reperfusion. Neuroreport 3: 519-520, 1992

    Google Scholar 

  13. Hayashi T, Takada K, Matsuda M: Subcellular distribution of ubiquitin-protein conjugates in the hippocampus following transient ischemia. J Neurosci Res 31: 561-564, 1992

    Google Scholar 

  14. Hayashi T, Tanaka J, Kamikubo T, Takada K, Matsuda M: Increase in ubiquitin conjugates dependent on ischemic damage. Brain Res 620: 171-173, 1993

    Google Scholar 

  15. Kamikubo T, Hayashi T, Ohkawa K: Lack of effect of transient ischemia on ubiquitin conjugation. Neurochem Res 20: 391-394, 1995

    Google Scholar 

  16. Gubellini P, Bisso GM, Ciofi-Luzzato A, Fortuna S, Lorenzini P, Michalek H, Scarsella G: Ubiquitin-mediated stress response in a rat model of brain transient ischemia/hypoxia. Neurochem Res 22: 93-100, 1997

    Google Scholar 

  17. Mengual E, Aritzi P, Rodrigo J, Gimenezamaja JM, Castano JG: Immunohistochemical distribution and electron microscopic subcellular localization of the proteasome in the rat CNS. J Neurosci 16: 6331-6341, 1996

    Google Scholar 

  18. Davies N, Lindsey GG: Histone H2B and H2A ubiquitination allow normal octamer and core particle reconstitution. Biochem Biophys Acta 1218: 187-193, 1993

    Google Scholar 

  19. Finley D, Chau V: Ubiquination. Annu Rev Cell Biol 7: 66-69, 1991

    Google Scholar 

  20. Hirt B: Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26: 708-714, 1967

    Google Scholar 

  21. Cristofanilli M, Iacoangeli A, Risuleo G, Scarsella G: A simple and rapid method allowing partial purification of low molecular weight DNA. Recent Res Dev Biotech Bioeng 4: 1-5, 2001

    Google Scholar 

  22. Bresin A, Iacoangeli A, Risuleo G, Scarsella G: Ubiquitin dependent proteolysis is activated in apoptotic fibroblasts in culture. Mol Cel Biochem 220: 57-60, 2001

    Google Scholar 

  23. Graham SH, Chen J: Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21: 99-109, 2001

    Google Scholar 

  24. Caday CG, Sklar RM, Berlowe D Jr, Kemmou A, Brown RH Jr, Finklestein SP: Poliubiquitin gene expression following cerebral ischemia. Ann NY Acad Sci 679: 188-194, 1993

    Google Scholar 

  25. Cao G, Pei W, Lan J, Stetler RA, Luo Y, Nagayama T, Graham SH, Yin XM, Simon RP, Chen J: Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci 21: 4678-90, 2001

    Google Scholar 

  26. Zhan RZ, Wu C, Fujihara H, Taga K, Qi S, Naito M, Shimoji K: Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c from mitochondria in a rat forebrain ischemia model. J Cereb Blood Flow Metab 21: 529-540, 2001

    Google Scholar 

  27. Canese R, Fortuna S, Lorenzini P, Podo F, Michalek H: Transient global ischemia in the rat: Spatial distribution, extension and evolution of lesion evaluated by magnetic resonance imaging. MAGMA 7: 28-34, 1998

    Google Scholar 

  28. Picologlou S, Brown N, Liebman SW: Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol Cell Biol 10: 1017-1022, 1990

    Google Scholar 

  29. Tsukada T, Watanabe M, Yamashima T: Implications of CAD and DNase II in ischemic neuronal necrosis specific for the primate hippocampus. J Neurochem 79: 1196-1206, 2001

    Google Scholar 

  30. Yao H, Takasawa R, Fukuda K, Shiokawa D, Sadanaga-Akiyoshi F, Ibayashi S, Tanuma S, Uchimura H: DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res 91: 112-118, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risuleo, G., Cristofanilli, M. & Scarsella, G. Acute ischemia/hypoxia in rat hippocampal neurons activates nuclear ubiquitin and alters both chromatin and DNA. Mol Cell Biochem 250, 73–80 (2003). https://doi.org/10.1023/A:1024950317684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024950317684

Navigation