Skip to main content
Log in

Measurement of the Motion of Fertilizer Particles Leaving a Centrifugal Spreader Using a Fast Imaging System

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Although mechanically simple, centrifugal spreaders used for mineral fertilization involve complex physics that cannot be fully characterized at the present time. We are developing sensors to evaluate the spatial distribution of the fertilizer on the ground based on the measurement of initial flight conditions of fertilizer granules after their ejection by the spreading disk. The techniques developed are based on the analysis of images of the area around the disk showing the granule ejection. A high resolution – low cost imaging system for the analysis of high speed particle projection developed for this specific purpose is presented in this paper. The system, based on a camera and a sequence of flashes, is used to characterize the centrifugal spreading of fertilizer particles ejected at speeds of approximately 30m s−1. It automatically computes the direction of ejection and velocity of each granule observed in the image. Multi-exposure images collected with the camera installed perpendicular to the output flow of granules are analyzed to estimate the trajectories of the fertilizer granules, using different motion estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adjroudi, R. 1993. Comportement d'un flux de particules solides hétérogènes sous l'action d'un lanceur rotatif (Behavior of heterogeneous solid particle flow under the effect of a rotary launcher). Ph.D. Thesis (Institut National Agronomique Paris-Grignon, France).

    Google Scholar 

  • Beauchemin, S. S. and Barron, J. L. 1995. The computation of optical flow. ACM Computing Surveys 27(3), 433-467.

    Google Scholar 

  • Cointault, F., Sarrazin, P., Rousselet, M. and Paindavoine, M. 2000. Modulation of the centrifugal spreading of the granules fertilizers: Flow measure and determination of the particles trajectories by imagery. In: Colloque AP2000: Actes du colloque Agriculture de Précision, edited by Educagri editions (Dijon, France), pp. 321-335.

  • Colin, A. 1997. Etude du procédé d'épandage centrifuge d'engrais minéraux (Study of the centrifugal spreading process of fertilizer). Ph.D. Thesis (Université Technologique de Compiègne, France).

    Google Scholar 

  • Graffigne, C., Preteux, F., Sigelle, M., Zérubia, J. Pérez, P. and Heitz, F. 1995. Hierarchical markov random field models applied to image analysis: A review. In: Image and Signal Processing Proceedings, SPIE Conference No 2568 on Neural Morphological and Statistic Methods, July 10–11 (San Diego).

  • Heeger, D. J. 1987. Model for the extraction of image flow. Optical Society of America 4(8), 1455-1471.

    Google Scholar 

  • Heikkilä, J. and Silvèn, O. 1997. A four-step camera calibration procedure with implicit image correction. In: CVPR'97: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (San Juan, Puerto Rico), pp. 1106-1112.

    Google Scholar 

  • Hofstee, J. W. 1994. Handling and spreading of fertilizers: Part 3, measurement of particle velocities and directions with ultrasonic transducers, theory, measurement system, and experimental arrangements. Journal of Agricultural Engineering Research 58(1), 1-16.

    Google Scholar 

  • Horn, B. K. P. and Schunck, B. 1981. Determining optical flow. Artificial Intelligence 17, 185-203.

    Google Scholar 

  • Kardouchi, M., Dipanda, A. and Legrand, L. 1997. Motion estimation with markov random fields using a direct algorithm. SPIE, International Symposium on Optical Applied Science and Engineering, 3101, Berlin, pp. 95-103.

    Google Scholar 

  • Olieslagers, R. 1997. Fertilizer distribution modeling for centrifugal spreader design. Ph.D. Thesis (University of Leuven, Belgium).

    Google Scholar 

  • Orkisz, M. and Clarysse, P. 1996. Estimation du flot optique en présence de discontinuités: une revue (Optical flow estimation preserving discontinuities: A survey). Traitement du Signal, Numéro spécial “Le mouvement dans les signaux et les images” 13(5), 489-513.

    Google Scholar 

  • Patent No 0109749. 24 July 2001. Dispositif de mesure du débit massique sur distributeur centrifuge de particules solides (Measurement system of solid particles mass flow on a centrifugal distributor).

  • Patterson, D. E. and Reece, A. R. 1962. The theory of centrifugal distributor I: Motion on the disc, near-centre feed. Journal of Agricultural Engineering Research 7(3), 232-234.

    Google Scholar 

  • Pellerin, D., Spinéi, A. and Guérin-Dugué, A. 1996. Optical flow based on combined gabor filters. Revue Traitement du Signal 13(1), 13-23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cointault, F., Sarrazin, P. & Paindavoine, M. Measurement of the Motion of Fertilizer Particles Leaving a Centrifugal Spreader Using a Fast Imaging System. Precision Agriculture 4, 279–295 (2003). https://doi.org/10.1023/A:1024904523582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024904523582

Navigation